• Title/Summary/Keyword: Plant Cells

Search Result 2,841, Processing Time 0.031 seconds

Inhibitory Effects of Pine Cone (Pinus densiflora) on Melanogenesis in B16F10 Melanoma Cells

  • Lee, Seung-Hyun;Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Park, Jae-Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • The pathological condition of excessive melanogenesis causing freckles, melasma, senile lentigo, pigmented acne scars, and cancer has a critical impact on the wellness of individuals. The mechanism of melanogenesis is related to the expression of melanogenic enzymes. Here, we evaluated the inhibitory effect of pine cone (Pinus densiflora) extracts on melanogenesis. P. densiflora, the Korean Red Pine, is the predominant tree species in the cool, temperate forests of northeast Asia, occurring in pure stands across Korea, Japan, and parts of northern China and Russia. P. densiflora leaves, pollen, and bark have been widely used for traditional medicine, or edible purposes. However, pine cones are rarely used as natural raw materials, although they contain many bioactive phytochemicals. The pine cone ethyl acetate fraction (PEF) showed no toxicity to B16F10 cells at a concentration of less than $100{\mu}g/mL$. PEF inhibited the expression of microphthalmiaassociated transcription factor (MITF), tyrosinase and tyrosinase-related factors in B16F10 cells treated with 3-Isobutyl1-methylxanthine (IBMX). These results suggest that pine cones can be used as an effective natural melanogenesis inhibitory agent.

Effect of Fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on Macrophage Activation (산돌배(Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee) 열매의 대식세포 활성화 유도 활성)

  • Geum, Na Gyeong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • In this study, we investigated in vitro immunostimulatory activity of fruit extracts from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee (PUF) using mouse macrophage RAW264.7 cells. PUF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β, IL-6 and TNF-α, and phagocytic activity in RAW264.7 cells. The inhibition of TLR2 and TLR4 blocked PUF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPKs signaling pathway reduced PUF-mediated production of immunostimulatory factors. From these results, PUF may have immunostimulatory activity via TLR2/4-mediated activation of MAPKs signaling pathway. Therefore, PUF expected to be used as a potential immune-enhancing agent.

Molecular Analysis of the Border Cell Differentiation in Root Cap of Pisum sativum L. (완두(Pisum sativum L.) 근관의 생장과 관련된 표피세포의 분화와 유전자 발현)

  • 우호영;장매희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.169-173
    • /
    • 1995
  • Border cells are differentiated cells which originate from meristematic cells in The root cap. Experimentally border cells can be released from the root cap by a physical treatment, for example dipping the root tip in the waters After 20-25 hours of release, the new border cell layer forms in the root cap. During the border cell differentiation, new gene expressions were observed in the root cap of pea which was determined by mRNA differential display These new gene expressions may be involved in the border cell differentiation Border cells had unique gene expressions which were determined by mRNA differential display, This suggests that border cells are differentiated cells which are different from the other tissues (ie., leaves, stems, roots or root caps).

  • PDF

Elicitation of Indole-3-ylmethyl Glucosinolate Biosynthesis in Turnip Culture Cells and Their Relationship with Plant Resistance to Botrytis cinerea (잿빛곰팡이병 추출물을 이용한 순무배양세포의 Indole-3-ylmethyl glucosinolate의 생합성유도와 병원성연구)

  • Kwon, Soon Tae;Zhang, Vivian
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.542-548
    • /
    • 2017
  • Two different races of Botryris cinerea were selected by the response of plant leaves to the pathogen infection. Based on lesion size of the pathogen on the leaves, turnip showed susceptible response to 'Grape-01' race, and resistant to 'Orange' race. Turnip leaves infected with resistant pathogen race, "Orange", showed significantly higher content of indole-3-ylmethyl glucosinolate (I3M) than those infected with susceptible race, 'Grape-01'. Contents of I3M in the leaves with resistant 'Orange' race was 2.5 times as high as that in uninfected leaves, whereas I3M in the leaves infected with susceptible 'Grape-01' race showed lower content than in untreated leaves. Growth of turnip suspension cells was significantly inhibited by the treatment of MeOH extract or water extract of 'Orange' race as compared with the treatment of susceptible race, 'Grape-01'. Treatment of MeOH or water extract from 'Orange' race to turnip suspension cells, strongly inhibited cell viability up to 22.7% or 16.5%, respectively. However, plant cells treated with MeOH or water extract from resistant race, 'Orange' showed higher I3M content than that from susceptible race, 'Grape-01'. These results suggest that accumulation and degradation of I3M glucosinolate in turnip cells closely related to the resistance and susceptibility of turnip cells to Botrytis cinerea.

Isolation of novel bovine parainfluenza virus type 5 (bPIV5) and its incidence in Korean cattle

  • Yang, Dong-Kun;Nah, Jin-Ju;Kim, Ha-Hyun;Choi, Sung-Suk;Bae, You-Chan;Park, Jung-Won;Song, Jae-Young
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • Four viruses showing cytopathic effects in MDBK cells were isolated from brains of cattle showing downer cattle syndrome in 2012. The isolates were confirmed to belong to the genus Rubulavirus of the subfamily Paramyxovirinae. Isolate QIA-B1201 had the ability to hemagglutinate red blood cells from several species of animals and was capable of adsorbing guinea pig erythrocytes on the surface of infected Vero cells. Nucleotide sequence analysis showed that two isolates (QIA-B1201 and QIA-B1204) had high similarity with other human and animal PIV5 isolates ranging from 98.1 to 99.8%. The highest sequence similarity of the two isolates corresponded to strain KNU-11 (99.8% at the nucleotide and amino acid level) isolated from suckling piglets in Korea in 2012. To evaluate the virulence of strain QIA-B1201, we inoculated bPIV5 into 5 week-old mice via both the intraperitoneal and intracranial route. Body weight was not significantly altered in mice inoculated with QIA-B1201. In this study, we isolated and characterized novel bPIV5s from brain samples showing downer cattle syndrome, but were not able to elucidate the pathogenicity of the bPIV5s in mice.

The Root from Heracleum moellendorffii Exerts Anti-Inflammatory Activity via the Inhibition of NF-κB and MAPK Signaling Activation in LPS-Stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.96-96
    • /
    • 2018
  • Although the roots of Heracleum moellendorffii (HM-R) have been long treated for inflammatory human diseases, scientific evidence for the anti-inflammatory activity of HM-R is not sufficient. In this study, we investigated anti-inflammatory activity and mechanism of action of HM-R in LPS-stimulated RAW264.7 cells. HM-R blocked LPS-induced NO and PGE2 production, but not HM-L. HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. In addition, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, HM-R inhibited attenuated LPS-mediated overexpression of the osteoclast-specific factors such as NFATc1, cathepsin K, MCP-1 and TRAP. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling activation. From these findings, HM-R has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammation and inflammatory diseases.

  • PDF

Ultrastructures of the Loaves of Cucumber Plane Treated with DL-3-Aminobutyric Acid at the Vascular Bundle and the Penetration Sites after Inoculation with Colletotrichum orbiculare

  • Jeun, Y.C.;Park, E.W.
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2003
  • Pre-treatment with DL-3-aminobutyric acid (BABA) in the cucumber plants caused the decrease of disease severity after inoculation with anthracnose pathogen Colletotrichum orbiculare. In this study, ultrastructures of the vascular bundle and the infection structures in the leaves of BABA-treated as well as untreated cucumber plants were observed after inoculation with the anthracnose pathogen by electron microscopy. The ultrastructures of vascular bundle in the leaves of BABA-treated plants were similar to those of the untreated plants except plasmodesmata. In the BABA-treated plants, the plasmodesmata were more numerous than in the untreated plants, suggesting that the BABA treatment may cause the active transfer of metabolites through the vascular bundle. In the leaves of untreated plants, the fungal hyphae were spread widely in the plant tissues at 5 days after pathogen inoculation. Most cellular organelles in the hyphae were intact, indicating a compatible interaction between the plant and the parasite. In contrast, in the leaves of BABA pre-treated plants the growth of most hyphae was restricted to the epidermal cell layer at 5 days after inoculation. Most hyphae cytoplasm and nucleoplasm was electron dense or the intracellular organelles were degenerated. The cell walls of some plant cells became thick at the site adjacent to the intercellular hyphae, indicating a mechanical defense reaction of the plant cells against the fungal attack. Furthermore, hypersensitive reaction (HR) of the epidermal cells was often observed, in which the intracellular hyphae were degenerated. Based on these results it is suggested that BABA causes the enhancement of defense mechanisms in the cucumber plants such as cell wall apposition or HR against the invasion of C. orbiculare.

Generation of a recombinant rabies virus expressing green fluorescent protein for a virus neutralization antibody assay

  • Yang, Dong-Kun;Kim, Ha-Hyun;Park, Yu-Ri;Yoo, Jae Young;Park, Yeseul;Park, Jungwon;Hyun, Bang-Hun
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.56.1-56.10
    • /
    • 2021
  • Background: Fluorescent antibody virus neutralization (FAVN) test is a standard assay for quantifying rabies virus-neutralizing antibody (VNA) in serum. However, a safer rabies virus (RABV) should be used in the FAVN assay. There is a need for a new method that is economical and time-saving by eliminating the immunostaining step. Objectives: We aimed to improve the traditional FAVN method by rescuing and characterizing a new recombinant RABV expressing green fluorescent protein (GFP). Methods: A new recombinant RABV expressing GFP designated as ERAGS-GFP was rescued using a reverse genetic system. Immuno-fluorescence assay, peroxidase-linked assay, electron microscopy and reverse transcription polymerase chain reaction were performed to confirm the recombinant ERAGS-GFP virus as a RABV expressing the GFP gene. The safety of ERAGS-GFP was evaluated in 4-week-old mice. The rabies VNA titers were measured and compared with conventional FAVN and FAVN-GFP tests using VERO cells. Results: The virus propagated in VERO cells was confirmed as RABV expressing GFP. The ERAGS-GFP showed the highest titer (108.0 TCID50/mL) in VERO cells at 5 days post-inoculation, and GFP expression persisted until passage 30. The body weight of 4-week-old mice inoculated intracranially with ERAGS-GFP continued to increase and the survival rate was 100%. In 62 dog sera, the FAVN-GFP result was significantly correlated with that of conventional FAVN (r = 0.95). Conclusions: We constructed ERAGS-GFP, which could replace the challenge virus standard-11 strain used in FAVN test.

Screening for Chemosensitizers from Natural Plant Extracts through the Inhibition Mechanism of P-glycoprotein

  • Ahn, Hee-Jeong;Song, Im-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.269-275
    • /
    • 2010
  • P-gp plays a critical role in drug disposition and represents a mechanism for the development of multidrug resistance. Flavonoids, a major class of natural compounds widely present in foods and herbal products, have been shown to inhibit P-gp. Therefore, the aim of this study was to identify new candidate chemosensitizers by screening various plant extracts. The ability of natural plant extracts to inhibit P-gp activity was assessed by measuring cellular accumulation of calcein AM, daunorubicin and vincristine in P-gp overexpressing MDCKII-MDR1 cells. Among more than 800 plant extracts, eight were found to inhibit P-gp activity. Curcuma aromatica extract produced greatest inhibition, followed by Curcuma longa and Dalbergia odorifera extracts. Extracts of Aloe ferox, Curcuma zedoariae rhizome, Zanthoxylum planispinum, and Ageratum conyzoides showed moderate inhibitory effects. Curcumin and quercetin exhibited similar inhibition of P-gpmediated efflux of daunorubicin and vincristine, and flavones had a lesser effect. When chemosensitizing effect was evaluated by measuring daunorubicin sensitivity to MDCKII-MDR1 cells in the presence of natural plant extracts, Curcuma aromatica showed the most potent chemosensitizing effect based on daunorubicin cytotoxicity. In conclusion, natural plant extracts such as Curcuma aromatica can potently inhibit P-gp activity and may have potential as a novel chemosensitizers.

Localization and Function of Cellulase in Endosperm Cells of Panax ginseng Seeds during Maturation and After-ripening (인삼 종자의 성숙과 후숙 과정에서 배유세포내 섬유소 가수분해효소의 분포 및 기능)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 1993
  • The active sites, intracellular transport, function of cellulase in association with the disintegration of the storage materials of the endosperm cells during seed maturation and after-ripening of Panax ginseng C.A. Meyer seeds were studied by electron microscopy. Cytochemical activities of the cellulase occurred in protein bodies and vesicles of endosperm cells in seed with red seed coat. In after-ripening seed, the activities were strongly found in the cell wall of endosperm near the umbiliform layer and on neighbouring vesicles, so it is assumed that these cells begin to be decomposed. Cellulase activities were initiated before the decomposition of storage materials. But, no activity was observed in the umbiliform layer, so it is suggested that cellulase lose its activity after the completion of lysis process.

  • PDF