• Title/Summary/Keyword: Plant Anomaly

Search Result 39, Processing Time 0.02 seconds

Power Plant Turbine Blade Anomaly Detection using Deep Neural Network-based Object Detection (깊은 신경망 기반 객체 검출을 이용한 발전 설비 터빈 블레이드 이상 탐지)

  • Yu, Jongmin;Lee, Jangwon;Oh, Hyeontaek;Park, Sang-Ki;Yang, Jinhong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • Due to the increase in the demand for anomaly detection according to the ageing of power generation facilities, the need for developing an anomaly detection method that can provide high-reliability turbine blade anomaly detection performance has been continuously raised. Additionally, the false detection results caused by a human error accelerates the increase of the need. In this paper, we propose an anomaly detection technique for turbine blades in power plants using deep neural networks. Experimental results prove that the proposed technique achieves stable anomaly detection performance while minimizing human factor intervention.

Deep-Learning-based Plant Anomaly Detection using a Drone (드론을 이용한 딥러닝 기반 식물 이상 탐지 시스템)

  • Lee, Jeong-Min;Lee, Yeong-Hun;Choi, Nam-Ki;Park, Heemin;Kim, Hyun-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.94-98
    • /
    • 2021
  • As the world's population grows, the food industry becomes increasingly important. Among them, agriculture is an industry that produces stocks of people all over the world, which is very important food industry. Despite the growing importance of agriculture, however, a large number of crops are lost every year due to pests and malnutrition. So, we propose a plant anomaly detection system for managing crops incorporating deep learning and drones with various possibilities. In this paper, we develop a system that analyzes images taken by drones and GPS of the drone's movement path and visually displays them on a map. Our system detects plant anomalies with 97% accuracy. The system is expected to enable efficient crop management at low cost.

Multi-sensor data-based anomaly detection and diagnosis of a pumped storage hydropower plant

  • Sojin Shin;Cheolgyu Hyun;Seongpil Cho;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.569-581
    • /
    • 2023
  • This paper introduces a system to detect and diagnose anomalies in pumped storage hydropower plants. We collect data from various types of sensors, including those monitoring temperature, vibration, and power. The data are classified according to the operation modes (pump and turbine operation modes) and normalized to remove the influence of the external environment. To detect anomalies and diagnose their types, we adopt a multivariate normal distribution analysis by learning the distribution of the normal data. The feasibility of the proposed system is evaluated using actual monitoring data of a pumped storage hydropower plant. The proposed system can be used to implement condition monitoring systems for other plants through modifications.

Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation (Subset 샘플링 검증 기법을 활용한 MSCRED 모델 기반 발전소 진동 데이터의 이상 진단)

  • Hong, Su-Woong;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • This paper applies an expert independent unsupervised neural network learning-based multivariate time series data analysis model, MSCRED(Multi-Scale Convolutional Recurrent Encoder-Decoder), and to overcome the limitation, because the MCRED is based on Auto-encoder model, that train data must not to be contaminated, by using learning data sampling technique, called Subset Sampling Validation. By using the vibration data of power plant equipment that has been labeled, the classification performance of MSCRED is evaluated with the Anomaly Score in many cases, 1) the abnormal data is mixed with the training data 2) when the abnormal data is removed from the training data in case 1. Through this, this paper presents an expert-independent anomaly diagnosis framework that is strong against error data, and presents a concise and accurate solution in various fields of multivariate time series data.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

Data Fusion Algorithm based on Inference for Anomaly Detection in the Next-Generation Intrusion Detection (차세대 침입탐지에서 이상탐지를 위한 추론 기반 데이터 융합 알고리즘)

  • Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 2016
  • In this paper, we propose the algorithms of processing the uncertainty data using data fusion for the next generation intrusion detection. In the next generation intrusion detection, a lot of data are collected by many of network sensors to discover knowledge from generating information in cyber space. It is necessary the data fusion process to extract knowledge from collected sensors data. In this paper, we have proposed method to represent the uncertainty data, by classifying where is a confidence interval in interval of uncertainty data through feature analysis of different data using inference method with Dempster-Shafer Evidence Theory. In this paper, we have implemented a detection experiment that is classified by the confidence interval using IRIS plant Data Set for anomaly detection of uncertainty data. As a result, we found that it is possible to classify data by confidence interval.

A study on the outlier data estimation method for anomaly detection of photovoltaic system (태양광 발전 이상감지를 위한 아웃라이어 추정 방법에 대한 연구)

  • Seo, Jong Kwan;Lee, Tae Il;Lee, Whee Sung;Park, Jeom Bae
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.403-408
    • /
    • 2020
  • Photovoltaic (PV) has both intermittent and uncertainty in nature, so it is difficult to accurately predict. Thus anomaly detection technology is important to diagnose real time PV generation. This paper identifies a correlation between various parameters and classifies the PV data applying k-nearest neighbor and dynamic time warpping. Results for the two classifications showed that an outlier detection by a fault of some facilities, and a temporary power loss by partial shading and overall shading occurring during the short period. Based on 100kW plant data, machine learning analysis and test results verified actual outliers and candidates of outlier.

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.

Development of an Anomaly Detection Algorithm for Verification of Radionuclide Analysis Based on Artificial Intelligence in Radioactive Wastes (방사성폐기물 핵종분석 검증용 이상 탐지를 위한 인공지능 기반 알고리즘 개발)

  • Seungsoo Jang;Jang Hee Lee;Young-su Kim;Jiseok Kim;Jeen-hyeng Kwon;Song Hyun Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • The amount of radioactive waste is expected to dramatically increase with decommissioning of nuclear power plants such as Kori-1, the first nuclear power plant in South Korea. Accurate nuclide analysis is necessary to manage the radioactive wastes safely, but research on verification of radionuclide analysis has yet to be well established. This study aimed to develop the technology that can verify the results of radionuclide analysis based on artificial intelligence. In this study, we propose an anomaly detection algorithm for inspecting the analysis error of radionuclide. We used the data from 'Updated Scaling Factors in Low-Level Radwaste' (NP-5077) published by EPRI (Electric Power Research Institute), and resampling was performed using SMOTE (Synthetic Minority Oversampling Technique) algorithm to augment data. 149,676 augmented data with SMOTE algorithm was used to train the artificial neural networks (classification and anomaly detection networks). 324 NP-5077 report data verified the performance of networks. The anomaly detection algorithm of radionuclide analysis was divided into two modules that detect a case where radioactive waste was incorrectly classified or discriminate an abnormal data such as loss of data or incorrectly written data. The classification network was constructed using the fully connected layer, and the anomaly detection network was composed of the encoder and decoder. The latter was operated by loading the latent vector from the end layer of the classification network. This study conducted exploratory data analysis (i.e., statistics, histogram, correlation, covariance, PCA, k-mean clustering, DBSCAN). As a result of analyzing the data, it is complicated to distinguish the type of radioactive waste because data distribution overlapped each other. In spite of these complexities, our algorithm based on deep learning can distinguish abnormal data from normal data. Radionuclide analysis was verified using our anomaly detection algorithm, and meaningful results were obtained.

Simplification of the Plant Models in PSA

  • Kim, Myung-Ro;Lee, Beom-Su;Kang, Sun-Koo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.499-504
    • /
    • 1996
  • Current Probabilistic Safety Assessment (PSA) techniques are not usually utilized for day-to-day applications in nuclear power plants. The major reason for this anomaly is the complexity of plant models developed for PSA studies and the multitude of resulting fault trees. This impediment can be overcome by the use of simplified plant models. However, oversimplified models usually result in loss of valuable information and therefore. simplification approaches have to be used judiciously in order to achieve accurate and meaningful results. For this reason. development of an appropriate simplification approach must be performed using extreme caution followed with results verification in sequence as well as system levels. If there are no significant differences between the simplified and the original models, the simplified model can be efficiently used in the application of the PSA. This paper presents a methodology for how to develop a suitable simplification technique and the results of its verification for sample systems and sequences. The results show that the utilization of simplified plant models will significantly reduce the number of fault trees with no significant loss of accuracy.

  • PDF