• Title/Summary/Keyword: Planning target volume

Search Result 284, Processing Time 0.021 seconds

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Evaluating the Dosimetric Characteristics of Radiation Therapies according to Head Elevation Angle for Head and Neck Tumors (두 경부 종양 치료 시 거상각도에 따른 치료기법 별 선량특성 평가)

  • Cheon, Geum-Seong;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2016
  • Since the head and neck region is densely located with organs at risk (OAR), OAR-sparing is an important issue in the treatment of head and neck cancers. This study-in which different treatment plans were performed varying the head tilt angle on brain tumor patients-investigates the optimal head elevation angle for sparing normal organs (e.g. the hippocampus) and further compares the dosimetric characteristics of different types of radiation equipment. we performed 3D conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and tomotherapy on 10 patients with brain tumors in the frontal lobe while varying the head tilt angle of patients to analyze the dosimetric characteristics of different therapy methods. In each treatment plan, 95% of the tumor volume was irradiated with a dose of 40 Gy in 10 fractions. The step and shoot technique with nine beams was used for IMRT, and the same prescription dose was delivered to the tumor volume for the 3D-CRT and tomotherapy plans. The homogeneity index, conformity index, and normal tissue complication probability (NTCP) were calculated. At a head elevation angle of $30^{\circ}$, conformity of the isodose curve to the target increased on average by 53%, 8%, and 5.4%. In 3D-CRT, the maximum dose received by the brain stem decreased at $15^{\circ}$, $30^{\circ}$, and $40^{\circ}$, compared to that observed at $0^{\circ}$. The NTCP value of the hippocampus observed in each modality was the highest at a head and neck angle of $0^{\circ}$ and the lowest at $30^{\circ}$. This study demonstrates that the elevation of the patients' head tilt angle in radiation therapy improves the target region's homogeneity of dose distribution by increasing the tumor control rate and conformity of the isodose curve to the target. Moreover, the study shows that the elevation of the head tilt angle lowers the NTCP by separating the tumor volume from the normal tissues, which helps spare OARs and reduce the delivered dose to the hippocampus.

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

Inter-fractional Target Displacement in the Prostate Image-Guided Radiotherapy using Cone Beam Computed Tomography (전립선암 영상유도 방사선 치료시 골반내장기의 체적변화에 따른 표적장기의 변화)

  • Dong, Kap Sang;Back, Chang Wook;Jeong, Yun Jeong;Bae, Jae Beom;Choi, Young Eun;Sung, Ki Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • Purpose : To quantify the inter-fractional variation in prostate displacement and their dosimetric effects for prostate cancer treatment. Materials and Methods : A total of 176 daily cone-beam CT (CBCT) sets acquired for 6 prostate cancer patients treated with volumetric-modulated arc therapy (VMAT) were retrospectively reviewed. For each patient, the planning CT (pCT) was registered to each daily CBCT by aligning the bony anatomy. The prostate, rectum, and bladder were delineated on daily CBCT, and the contours of these organs in the pCT were copied to the daily CBCT. The concordance of prostate displacement, deformation, and size variation between pCT and daily CBCT was evaluated using the Dice similarity coefficient (DSC). Results : The mean volume of prostate was 37.2 cm3 in the initial pCT, and the variation was around ${\pm}5%$ during the entire course of treatment for all patients. The mean DSC was 89.9%, ranging from 70% to 100% for prostate displacement. Although the volume change of bladder and rectum per treatment fraction did not show any correlation with the value of DSC (r=-0.084, p=0.268 and r=-0.162, p=0.032, respectively), a decrease in the DSC value was observed with increasing volume change of the bladder and rectum (r=-0.230,p=0.049 and r=-0.240,p=0.020, respectively). Conclusion : Consistency of the volume of the bladder and rectum cannot guarantee the accuracy of the treatment. Our results suggest that patient setup with the registration between the pCT and daily CBCT should be considered aligning soft tissue.

  • PDF

Evaluation of Usefulness on In-vivo Diode Dosimetry for Measuring the Tumor Dose of Oral Cancer Patient (구강암 환자의 종양 선량 측정을 위한 In-vivo Diode Dosimetry의 유용성 평가)

  • Na Kyung-Su;Lee Je-Hee;Park Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • Purpose : This test is designed to identify the validity of treatment plan by implementing real-time dosimetry by means of dose that is absorbed into PTV and OAR when preparing doses of 3D and POP plans. Materials and Methods : In treatment. error can be calculated be comparing Exp. Dose with the actual dose, which has been converted from 'the reading value obtained by placing diode detector on the area to be measured'. Same test can be repeated using Alderson-Rando phantom. Results : Errors were found: A patient(POP plan): 197.6/199=-1.2%, B patient(3D-plan): 199.9/198.7=+0.6%, C patient: 196/200=-1.5%. In addition, considering the resulted value of measuring OAR besides target-dose for C patient showed 96/200, representing does of 47%, the purpose of protection was judged to be duly accomplished. Also it was acknowledged the resulted value of -3.7% met the targeted dose within the range of ${\pm}5%$. Conclusion : Aimed for identifying the usefulness of pre-treatment dose measurement using diode detector, this test was useful to evaluate the validity of curing because it resulted in the identification of category to be protected as well as t dose. Moreover, it is thought to have great advantage in ascertaining the dose of target, dose of which is not calculated yet. Similar to L-gram before treatment, this test is thought to be very effective so that it can bring great advantages in the aspects such as validity of curing method and post-treatment plan as well.

  • PDF

Application of Intensity Modulated Radiation Therapy (IMRT) in Prostate Cancer (전립선암에서 강도변조방사선치료 (Intensity Modulated Radiation Therapy)의 적용)

  • Park Suk Won;Oh Do Hoon;Bae Hoon Sik;Cho Byung Chul;Park Jae Hong;Han Seung Hee
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • This study was done to implement intensity-modulated radiation therapy (IMRT) for the treatment of primary prostate cancer and to compare this technique with conventional treatment methods. A 72-year-old male patient with prostate cancer stage T2a was treated with IMRT delivered with dynamic multi-leaf collimation. Treatment was designed using an inverse planning algorithm, which accepts dose and dose-volume constraints for targets and normal structures. The IMRT plan was compared with a three-dimensional (3D) plan using the same 6 fields technique. Lower normal tissue doses and improved target coverage were achieved using IMRT at current dose levels, and facilitate dose escalation to further enhance locoregional control and organ movement during radiotherapy is an important issue of IMRT in prostate cancer.

Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience

  • Choi, Kyu Hye;Kim, Jina;Lee, Sea-Won;Kang, Young-nam;Jang, HongSeok
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Purpose: The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. Materials and Methods: We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Results: Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart $V_{30}$ (p = 0.039), $V_{40}$ (p = 0.040), and $V_{50}$ (p = 0.032). Conclusion: Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung $V_{10}$, $V_{20}$, and $V_{30}$ than in 3D-CRT, but could not be proven superior in lung $V_5$. In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

Rectal balloon for the immobilization of the prostate internal motion (전립선 내부 움직임 고정용 직장풍선)

  • Cho, Sam-Ju;Cho, Jae-Ho;Lee, Sang-Kyoo;Chu, Sung-Sil;Bak, Jin-Ho;Lee, Se-Byong;Jeong, Kyoung-Keun;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.136-139
    • /
    • 2004
  • In this study, we used the rectal balloon to overcome the dose limit of the radiation therapy in the prostate cancer. Using the rectal balloon, we could minimize the planning target volume (PTV) by minimizing the internal motion of prostate and increased the gap between the rectum wall and the high dose region. To this purpose, we analyzed the position reproducibility of rectal balloon during the patient setup. Moreover, we studied the clinical feasibility of rectal balloon by performing the IMRT plan.

  • PDF

Stereotactic body radiation therapy for liver oligo-recurrence and oligo-progression from various tumors

  • Cha, Yu Jin;Kim, Mi-Sook;Jang, Won-Il;Seo, Young Seok;Cho, Chul Koo;Yoo, Hyung Jun;Paik, Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.172-179
    • /
    • 2017
  • Purpose: To evaluate the outcomes of stereotactic body radiation therapy (SBRT) for patients with liver oligo-recurrence and oligo-progression from various primary tumors. Materials and Methods: Between 2002 and 2013, 72 patients with liver oligo-recurrence (oligo-metastasis with a controlled primary tumor) and oligo-progression (contradictory progression of a few sites of disease despite an overall tumor burden response to therapy) underwent SBRT. Of these, 9 and 8 patients with uncontrollable distant metastases and patients immediate loss to follow-up, respectively, were excluded. The total planning target volume was used to select the SBRT dose (median, 48 Gy; range, 30 to 60 Gy, 3-4 fractions). Toxicity was evaluated using the Common Toxicity Criteria for Adverse Events v4.0. Results: We evaluated 55 patients (77 lesions) treated with SBRT for liver metastases. All patients had controlled primary lesions, and 28 patients had stable lesions at another site (oligo-progression). The most common primary site was the colon (36 patients), followed by the stomach (6 patients) and other sites (13 patients). The 2-year local control and progression-free survival rates were 68% and 22%, respectively. The 2- and 5-year overall survival rates were 56% and 20%, respectively. The most common adverse events were grade 1-2 fatigue, nausea, and vomiting; no grade ${\geq}3$ toxicities were observed. Univariate analysis revealed that oligo-progression associated with poor survival. Conclusion: SBRT for liver oligo-recurrence and oligo-progression appears safe, with similar local control rates. For liver oligo-progression, criteria are needed to select patients in whom improved overall survival can be expected through SBRT.

Impact of Adaptive Radiotherapy on Locally Advanced Head and Neck Cancer - A Dosimetric and Volumetric Study

  • Dewan, Abhinav;Sharma, SK;Dewan, AK.;Srivastava, Himanshu;Rawat, Sheh;Kakria, Anjali;Mishra, Maninder;Suresh, T;Mehrotra, Krati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.985-992
    • /
    • 2016
  • Objective of the study is to evaluate volumetric and dosimetric alterations taking place during radiotherapy for locally advanced head and neck cancer (LAHNC) and to assess benefit of replanning in them. Materials and Methods: Thirty patients with LAHNC fulfilling the inclusion and exclusion criteria were enrolled in a prospective study. Planning scans were acquired both pre-treatment and after 20 fractions (mid-course) of radiotherapy. Single plan (OPLAN) based on initial CT scan was generated and executed for entire treatment course. Beam configuration of OPLAN was applied to anatomy of interim scan and a hybrid plan (HPLAN30) was generated. Adaptive replanning (RPLAN30) for remaining fractions was done and dose distribution with and without replanning compared for remaining fractions. Results: Substantial shrinkage of target volume (TV) and parotids after 4 weeks of radiotherapy was reported (p<0.05). No significant difference between planned and delivered doses was seen for remaining fractions. Hybrid plans showed increase in delivered dose to spinal cord and parotids for remaining fractions. Interim replanning improved homogeneity of treatment plan and significantly reduced doses to cord (Dmax, D2% and D1%) and ipsilateral parotid (D33%, D50% and D66%) (p<0.05). Conclusions: Use of one or two mid-treatment CT scans and replanning provides greater normal tissue sparing along with improved TV coverage.