• Title/Summary/Keyword: Planning Hull

Search Result 49, Processing Time 0.024 seconds

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

A Study on the Generation of the Production Material Information of a Building Block and the Simulation of the Block Erection (선체 블록의 물량 정보 생성 및 블록 탑재 시뮬레이션에 관한 연구)

  • Lee K.Y.;Roh M.I.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.115-127
    • /
    • 2006
  • At the initial design stage, the generation process of the production material information of a building block and the simulation process of the block erection, which are required to perform the production planning and scheduling, have been manually performed by using 2D drawings, data of parent ships, and design experiences. To make these processes automatic, the accurate generation method of the production material information and the convenient simulation method of the block erection using the 3D CAD model, which was generated from the initial hull structural design system early developed by us, were proposed in this study. For this, a 3D CAD model for a whole hull structure was generated first, and the block division method for dividing the 3D CAD model into several building blocks was proposed. The generation method of the production material information for calculating the weight, center of gravity, painting area, joint length, etc. of a building block was proposed as well. Moreover, the simulation method of the block erection was proposed. Finally, to evaluate the efficiency of the proposed methods for the generation of the production material information and the simulation of the block erection, these methods were applied to corresponding processes of a deadweight 300,000 ton VLCC (Very Large Crude oil Carrier). As a result, it was shown that the production material information of a building block can be accurately generated and the block erection can be conveniently simulated in the initial design stage.

Conceptual Design of Small WIG Craft (소형 위그선 개념 설계)

  • Shin, Myung-Soo;Kim, Yoon-Sik;Lee, Gyeong-Joong;Kang, Kuk-Jin;Park, Young-Ha;Lee, Young-yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.134-146
    • /
    • 2006
  • This paper presents the primary conceptual design results of twenty-passenger class Wing-In-Ground(WIG) effect craft. As a first step, top level requirements were proposed and principal dimensions were determined. Maximum speed in ground effect condition is 150 km/h with two tons payload including passengers. Total weight is estimated as 8.5 tons with 2 tons of thrust. Hull and airfoil sections were designed and self propulsion tests were performed by radio controlled model. Two planing hull forms with the transom stern were proposed and towing tests were performed. The resistance and running attitude were measured and the feasibility is checked for the prototype hull form of the twenty-passenger class WIG craft. The free running tests show the stable smooth running attitude at designed speed. Also this radio controlled model can take off around 0.15 meter wave height. It can be said that the top level requirement for the twenty passenger class WIG ship is satisfied successfully. The design optimization to increase the transport efficiency and safety will be performed in the near future.

Layered Visibility Graph With Convex Hull to Avoid the Complex Terrain for UAV (무인기의 복잡한 지형 회피를 위한 Convex Hull 기반의 계층형 Visibility Graph)

  • Lim, Daehee;Park, Jihoon;Min, Chanoh;Jang, Hwanchol;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.874-880
    • /
    • 2019
  • This paper introduces a method which can be effectively used for the path planning of UAV in a realistic map which has mountainous terrains, air defense networks and radars based on the Visibility Graph. Existing studies of Visibility Graph have been studied mainly for simple shape obstacles in 2-dimensional environment such as self-driving cars which avoid buildings. However, for UAV, Visibility Graph must be used in 3-dimensional environment for the variance of altitude. This occurs significant elapsed time increase because of the increase of the amount of the visibility of node sets. To solve this problem, this paper decrease the number of nodes which consists the complex terrain environments using convex hull based on Layered Visibility Graph. With convex hull method, this paper confirmed that the elapsed time is decreased about 99.5% compared to the case which has no decrease of the number of nodes.

A Study on the Effect of LCG Variation to the Resistance Performance for High Speed Planing Fishing Boat (고속활주형어선의 종방향중심이 저항에 미치는 영향에 관한 연구)

  • 이귀주;이조원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.308-312
    • /
    • 2001
  • This study was carried out to develop a basic form of planning hull type fishing boat. G/T 10ton class is selected as object hull form, and hull form is designed in Chosun University. A series of test results of LCG variations for S different LCG points are presented in this paper. The test was performed in Davidson Laboratory, and the scope of tests include resistance, trim and sinkage.

  • PDF

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

Study on Resistance Characteristics of 50-ft class CFRP Power Yacht (경량탄소섬유(CFRP) 소재 50피트급 파워요트 저항특성에 관한 연구)

  • Jeong, Uh-Cheul;Ryu, Cheol-Ho;Oh, Dae-Kyun;Hong, Ki-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.493-499
    • /
    • 2014
  • The resistance performances were studied for two 50-ft-class power yachts made of carbon fiber reinforced plastic (CFRP) with different hull form characteristics using model tests. The tests were carried out at a high-speed circulating water channel (CWC) for the 16–38 knot range. The total resistance, trim, and sinkage were measured, and the results were compared with wave patterns. The results showed that a chine position at the draft line had a strong effect on the planning performance and resistance performance in a certain velocity range.

Development of Underwater Hull Search Time Prediction Model with Discrete Event Simulation (이산사건 시뮬레이션을 이용한 수중 선체 탐색 시간 예측 모델 개발)

  • Joopil Lee;Seung-Ho Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.152-160
    • /
    • 2024
  • In the event of a maritime accident, search plans have traditionally been planned using experiential methods. However, these approaches cannot guarantee safety when the scale of a maritime accident increases. Therefore, this study proposes a model utilizing discrete event simulation (DES) to predict the diving time for compartment searches of a ship located on the seabed. The discrete event simulation model was created by applying the DEVS formalism. The M/V Sewol sinking was used as an example to simulate how to effectively navigate compartments of different sizes. The simulation results showed the optimal dive time with the number of decompression chambers needed to navigate the compartment as a variable. Based on this, we propose a methodology for efficient navigation planning while ensuring diver safety.

A Study on the Construction of Detail Integrated Scheduling System of Ship Building Process (선박건조공정의 미세 통합 일정 관리 체계 구축에 관한 연구)

  • Kim, Yong-Seop;Lee, Dae-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.48-54
    • /
    • 2007
  • Higher productivity and less cost during the manufacturing process of ships are required to maintain international competitiveness of modern shipbuilding industries. The integrated hull/ outfitting/ painting scheduling(IHOP) process is a final point, where logistics are finally being integrated and upcoming schedules are made. Therefore, more profits are expected from IHOP by effective management. In this thesis, IHOP is proposed in order to solve how to choose block erection date with IHOP scheduling logic. The result of IHOP scheduling is highly advised to utilize fabrication, outfitting shops. A standardized operation and load of resource will eventually be applied in long-term time span point of view for this will make it easy to enable capacity planning and workforce planning. It is also expected to eliminate inefficiency in overtime work and efficiently utilize manpower in short-term.

A Study on a Manpower Forecasting Model for Naval Ships (해군 함정 승조원 수 예측 모형에 관한 연구)

  • Hwang, In ha;Jeong, Yeon hwan;Lee, Ki hyun;Kang, Seok joong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • The low birthrate and the need for national defense reform in Korea drive the Navy to develop efficient human resource planning such as a manpower forecasting model. However, to our knowledge, there is no study exploring the manpower forecasting model for naval ships in Korea. The purpose of this paper is to develop a model for forecasting manpower demand in naval ships. Data for analyses were drawn from 19 ships in the Korean Navy. Results indicate that mission type is significantly related to the number of manpower. Specifically, battleships need the more manpower than the battle support ships. The results also showed that the weight of hull structure-engine and the weight of the weapons system significantly increased the number of manpower. However, the weight of the combat system was not significant. In addition, whereas the automation level of hull structure-engine and the automation level of weapon system was found to be negatively related to the number of manpower, the automation level of combat system was positively related to it. The model developed here contributes to an advanced human resource planning of the Korean Navy. Implications, limitations, and directions for future research are discussed.