• 제목/요약/키워드: Plane stress field

검색결과 181건 처리시간 0.029초

Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space

  • Singh, Baljeet;Bijarnia, Rupender
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.473-479
    • /
    • 2021
  • The propagation of plane waves in a linear, homogeneous and isotropic nonlocal generalized thermoelastic solid medium is considered in the framework of Lord and Shulman generalization. The governing field equations are formulated and specialized in a plane. Plane wave solutions of governing equations show that there exists three plane waves, namely, P, thermal and SV waves which propagate with distinct speeds. Reflection of P and SV waves from thermally insulated or isothermal boundary of a half-space is considered. The relevant boundary conditions are applied at stress free boundary and a non-homogeneous system of three equations in reflection coefficients is obtained. For incidence of both P and SV waves, the expressions for energy ratios of reflected P, thermal and SV waves are also obtained. The speeds and energy ratios of reflected waves are computed for relevant physical constants of a thermoelastic material. The speeds of plane waves are plotted against nonlocal parameter and frequency. The energy ratios of reflected waves are also plotted against the angle of incidence of P wave at a thermally insulated stress-free surface. The effect of nonlocal parameter is shown graphically on the speeds and energy ratios of reflected waves.

Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating

  • Othman, Mohamed I.A.;Fekry, Montaser;Marin, Marin
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.621-629
    • /
    • 2020
  • The present paper aims to study the influence of the magnetic field and initial stress on the 2-D problem of generalized thermo-viscoelastic material with voids subject to thermal loading by a laser pulse in the context of the Lord-Shulman and the classical dynamical coupled theories. The analytical expressions for the physical quantities are obtained in the physical domain by using the normal mode analysis. These expressions are calculated numerically for a specific material and explained graphically. Comparisons are made with the results predicted by the Lord-Shulman and the coupled theories in the presence and absence of the initial stress and the magnetic field.

층이 있는 반무한체의 접촉하중에 의한 응력을 푸리에 적분을 이용한 해석 (Stress Analysis of a Layered Semi-infinite Solid Subjected to Contact Loading Using a Fourier Integral)

  • 안유민;박상신
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.373-379
    • /
    • 2001
  • The problem of interest is formulating elastic contact problem of a layered semi-infinite solid in terms of Fourier integral. The plane strain problem is considered for a solid composed of homogeneous isotropic two layers with different mechanical properties. General solutions for the subsurface stress and deformation field of frictionless elastic bodies under normal loading using of Fourier transformation technique are obtained. The numerical results for the stress distribution of coated solid for some particular cases are given.

연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법 (Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement)

  • 조영교;석종환;최린;김성민
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

수직자기기록매체용 Fe-Co-B/M 하지연자성층의 미세결정구조 및 자기특성 (Microstructure and Magnetic Properties in Fe-Co-B/M Films for Soft Magnetic Underlayer of Perpendicular Magnetic Recording Media)

  • 공석현;손인환;금민종;최형욱;박용서;김경환
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.888-892
    • /
    • 2004
  • It is necessary to develop soft magnetic layer with high saturation magnetization 4 $\pi{M}_s$ and in-plane magnetic anisotropy field Hk for soft magnetic underlayer of perpendicular magnetic recording media with high signal to noise ratio. Fe-Co-B layer with high 4 $\pi$Ms of about 23 kG deposited on Ni-Fe and Ni-Fe/Si seedlayer exhibited very high in-plane magnetic anisotropy filed Hk of about 280 and 380 Oe, respectively, In-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was longer than that along the hard axis direction in the Fe-Co-B layers with high Hk. These results indicate that high Hk of Fe-Co-B/Ni-Fe and Fe-Co-B/[Ni-Fe/si] layers were resulted from magnetoelastic anisotropy owing to a residual stress. Moreover, the high Hk in the Fe-Co-B/Ni-Fe layer was maintained until 30$0^{\circ}C$ annealing temperature.

혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석 (Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method)

  • 이정기;윤구영
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수 (Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film)

  • 김동일;허용학;김동진;기창두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF

인장 및 압축 등방 잔류응력 측정을 위한 누프 압입시험의 응력환산계수 결정 (Determination of Knoop Indentation Stress Conversion Factors for Measuring Equibiaxial Residual Stress)

  • 정민재;김영천
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.484-490
    • /
    • 2021
  • Instrumented indentation testing has been widely used for residual stress measurement. The Knoop indentation is mainly selected for determining anisotropic mechanical properties and non-equibiaxial residual stress. However, the measurement of equibiaxial stress state and compressive residual stress on a specimen surface using Knoop indentation is neither fully comprehended nor unavailable. In this study, we investigated stress conversion factors for measuring Knoop indentation on equibiaxial stress state through indentation depth using finite element analysis. Knoop indentation was conducted for specimens to determine tensile and compressive equibiaxial residual stress. Both were found to be increased proportionally according to indentation depth. The stress field beneath the indenter during each indentation test was also analyzed. Compressive residual stress suppressed the in-plane expansion of stress field during indentation. In contrast, stress fields beneath the indenter developed diagonally downward for tensile residual stress. Furthermore, differences between trends of stress fields at long and short axes of Knoop indenter were observed due to difference in indenting angles and the projected area of plastic zone that was exposed to residual stress.

An assumed-stress hybrid element for static and free vibration analysis of folded plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.405-421
    • /
    • 2007
  • A four-node hybrid stress element for analysing orthotropic folded plate structures is presented. The formulation is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. The proposed element has six degree of freedom per node and permits an easy connection to other type of elements. An equilibrated stress field in each element and inter element compatible boundary displacement field are assumed independently. Static and free vibration analyses of folded plates are carried out on numerical examples to show that the validity and efficiency of the present element.

하이브리드 기법에 의한 경사균열 팁 주위의 광탄성 응력장 해석 (Analysis of Photoelastic Stress Field Around Inclined Crack Tip by Using Hybrid Technique)

  • 첸레이;서진;이병희;김명수;백태현
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1287-1292
    • /
    • 2010
  • 본 연구에서는 균열선단 주위의 응력장을 균열선단으로부터 떨어진 일직선상에서 유한요소법에 의해 계산된 광탄성 등색프린지 차수와 급수형 등각사상 맵핑함수를 이용하여 해석하였다. 해석된 광탄성 응력장을 실제의 광탄성프린지와 비교하였다. 정성적인 비교가 용이하도록 디지털 영상처리에 의해 등색프린지 패턴을 2 배로 증식시키고, 증식된 프린지를 다시 세선처리하여 서로 비교하였다. 유한요소법으로 계산된 프린지 차수를 이용한 하이브리드 응력장 해석에 의해 계산된 프린지와 광탄성 실험에 의한 실제의 프린지를 정성적이고 정량적인 비교를 하였다. 입력된 변위와 계산된 변위의 퍼센트 오차는 18 개의 데이터 모두 6.0% 이하로 서로 일치하였다. 또한 하이브리드 기법에 의한 정규화시킨 응력확대계수 $K_I$$K_{II}$는 유한요소법과 경험식으로 계산된 값에 근접하였다.