• Title/Summary/Keyword: Plane of motion

Search Result 790, Processing Time 0.023 seconds

A Response to Postural Response to Sine Curve Vestibular Electric Stimulation during Standing (기립자세동안 전정기관에 인가된 정현파 전류자극에 대한 자세균형 응답)

  • Lee, Ah-Reum;Yu, Mi;Kim, Jin-Ho;Kim, Dong-Wook;Kim, Jung-Ja
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • This study is vestibular electric stimulation applied between the mastoids during quiet standing elicits postural sway. The aim of this study was to characterize the postural sway response to continuous sinusoidal vestibular electric stimulation across various stimulus frequencies and amplitudes. Binaural bipolar sinusoidal vestibular electric stimulation was applied to the skin overlying the mastoid processes of 10 subjects while they stood on a force plate. The position of the center of pressure(COP) and signals at the feet are obtained on an force plate, while the head and whole body center of mass(COM) was measured with motion analysis system. The stimulus conditions included eight frequencies (1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, and 2Hz) and six peak amplitudes (0.1, 0.25, 0.5, 0.7, 1 and 2mA). Each subject experienced one trial at each amplitude-frequency pair. The stimuli elicited sway in lateral plane in all subjects, as evidenced by changes in the stimulus frequency. Our results demonstrate that the vestibular system is sensitive to vestibular electric stimulation intensity changes and responds by altering the magnitude of the response accordingly.

Wind Castle: Typhoon Control by the Natural Intelligence of Batdam(1.5m) II (윈드캐슬: 밭담(1.5m)의 자연지능에 의한 태풍 제어 II)

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.113-119
    • /
    • 2020
  • This paper proved the reason why the Batdam does not collapse in the 50m/s typhoon by the Circulation of the Stack Effect and traced the correlation with crops in spring, summer, autumn and winter. Batdam, which is built with oedam, is a magic wall wich is played the role of 3rd layer over 22,000km, when stacked in a field, has the inertia like a linear motion of constant velocity and resists winds no matter how strong it blows. We analyzed the reason of Batdam 1.5 meters, Oreum 200 times of Batdam, and Hallasan 1,300 times Batdam, and analyzed the resonance of the characteristic function. In this paper, we adapted to natural climate change, and we built a batdam to derive the height of the batdam and neutral plane for farming according to the seasonal characteristics, and designed the relationship between natural intelligence control.

Analysis of Muscle Activity of the Scapular Rotators With Changes of Shoulder Abduction Angle in Both Erect and Slouched Trunk Position (척주 기립자세와 굽힌자세에서 어깨관절 외전각도 변화에 따른 어깨뼈 주위 근 활성도 분석)

  • Kim, Duck-Hwa;Choi, Jong-Duk;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • Altered scapular kinematics in the scapular joint is commonly believed to be a factor contributing to trunk posture. The purpose of this study was to analyze the muscle activity with several changes of the shoulder angle. Tests were performed on 10 male subjects by repeated measures. Each subject was measured while sitting in both erect and slouched trunk positions. In each sitting posture, a three-dimensional motion analysis measurement was used to measure thoracic angle and shoulder abduction angle. Measurements were taken with the shoulder abdcution angle at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $150^{\circ}$. By using surface Electromyography (EMG) electrodes, we recorded the activity of the upper trapezius, middle trapezius, lower trapezius, middle deltoid, and serratus anterior muscle while the subject held a 4 kg weight at each angle. The mean of root mean square (RMS) of EMG activity was calculated. The middle trapezius, lower trapezius, and middle deltoid muscle activity showed significantly higher results but serratus anterior muscle activity showed significantly lower results (p<.05). With the shoulder angle increased, the muscle activity was also significantly increased (p<.05). In conclusion, the thoracic spine posture significantly affects the scapular muscle during scapular plane abduction, and the slouched posture is associated with increased trapezius muscle activity and with decreased serratus anterior muscle activity.

  • PDF

Dynamic Characteristics of Helicopter Bearingless Main Rotor (헬리콥터 무베어링 주로터의 동특성 시험)

  • Yun, Chul Yong;Song, Keun Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • The characteristics of bearingless main rotor of helicopter are investigated through non-rotating tests and rotating tests. The stiffness and natural frequencies of rotor blades, flexbeam, and torque tube which are core components of baearingless rotor are measured to obtain input material properties for rotor analysis. The functional test on ground for assembly of one hub with damper, snubber, and no blade is carried out to check interfaces between components, kinematics of components, and pitch motion ranges under applied loads including centrifugal load. The 4-bladed bearingless rotor with 5.82m of rotor radius is tested on the whirl tower with rotation plane of 9.65m height. The thrust and power are measured to obtain hover performance and the frequencies and dampings of the rotor are obtained by excitation of cyclic pitch by hydraulic actuators.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

Characteristics of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min;Yong, Sang-Soon;Woo, Sun-Hee;Lee, Sang-Gyu;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.319-324
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of < 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The instrument also performs sun calibration and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm during ground characterization of instrument. In addition to the ground calibration, the on-board calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

  • PDF

Influence of Ligament Deficits and Isthmic Defects on Instability in Lumbar Spine (인대 결손과 협부 결손이 요추 불안정성에 미치는 영향)

  • Choi, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1205-1210
    • /
    • 2011
  • Spinal instability known to be related to low back pain. However, the quantitative definition of spinal instability has not been established because there is a lack of consensus regarding clinical and radiological studies. In addition, the major factors affecting such instability have not been elucidated, although disc degeneration, disc injury, ligament injury, and isthmic defects are considered to result in such problems. In this study, individual and combined influences on spinal instability with a three-dimensional finite element model of a one-level lumbar spinal motion segment were investigated, under the assumption that the rotation and translation in the sagittal plane under flexion and extension represented the instability indices. The results could be helpful in understanding the causes and mechanisms of spinal instability in the lumbar spine.

The Ground Checkout Test of OSMI on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform global ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800km and a ground sample distance (GSD) of < 1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests including instrument aliveness/functional test, such as launch environment, on-orbit environment (Thermal/Vacuum) and EMI/EMC test were performed at KARl. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite on December 21,1999 and is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

Facial Gaze Detection by Estimating Three Dimensional Positional Movements (얼굴의 3차원 위치 및 움직임 추정에 의한 시선 위치 추적)

  • Park, Gang-Ryeong;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.23-35
    • /
    • 2002
  • Gaze detection is to locate the position on a monitor screen where a user is looking. In our work, we implement it with a computer vision system setting a single camera above a monitor and a user moves (rotates and/or translates) his face to gaze at a different position on the monitor. To detect the gaze position, we locate facial region and facial features(both eyes, nostrils and lip corners) automatically in 2D camera images. From the movement of feature points detected in starting images, we can compute the initial 3D positions of those features by camera calibration and parameter estimation algorithm. Then, when a user moves(rotates and/or translates) his face in order to gaze at one position on a monitor, the moved 3D positions of those features can be computed from 3D rotation and translation estimation and affine transform. Finally, the gaze position on a monitor is computed from the normal vector of the plane determined by those moved 3D positions of features. As experimental results, we can obtain the gaze position on a monitor(19inches) and the gaze position accuracy between the computed positions and the real ones is about 2.01 inches of RMS error.