• Title/Summary/Keyword: Plane of motion

Search Result 785, Processing Time 0.031 seconds

The Geometrical Analysis of Vibration Modes and Frequency Responses of an Elastically Suspended Optical Disc Drive (탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.362-369
    • /
    • 2000
  • Via screw theory, a vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as a twisting motion on a screw in a three dimensional space. In thi s paper, applying the conditions that can be used to diagonalize the stiffness matrix by a parallel axis congruence transformation, the vibration modes and frequency response of an elastically suspended optical disc drive have been analyzed. It is first shown that the system has one plane of symmetry, which enables one to decouple the complicated vibration modes into two sets of modes independent of each other. Having obtained the analytical solutions for the axes of vibrations, the frequency response for a given applied input force has been demonstrated. Most importantly, it has been explained that this research result could be used in the synthesis process of a linear vibration system in order to improve the frequency response.

MOLECULAR DYNAMICS SIMULATION OF STRESS INDUCED GRAIN BOUNDARY MIGRATION DURING NANOINDENTATION EXPERIMENTS (나노압흔시 응력에 따른 결정립계거동의 분자역학모사)

  • Yoon, Jang-Hyeok;Kim, Seong-Jin;Chang, Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.39-39
    • /
    • 2003
  • Molecular dynamics (MD) simulation was performed to study the stress induced grain boundary migration caused by the interaction of dislocations with a gain boundary. The simulation was carried out in a Ni block (295020 atoms) with a ∑ = 5 (210) grain boundary and an embedded atom potential for Ni was used for the MD calculation. Stress was provided by indenting a diamond indenter and the interaction between Ni surface and diamond indenter was assumed to have a fully repulsive force to emulate a faction free surface. Results showed that the indentation nucleated perfect dislocations and the dislocations produced stacking faults in the form of a parallelepiped tube. The parallelepiped tube consisted of two pairs of parallel dislocations with Shockley partials and was produced successively during the penetration of the indenter. The dislocations propagated along the parallelepiped slip planes and fully merged onto the ∑ = 5 (210) grain boundary without emitting a dislocation on the other grain. The interaction of the dislocations with the grain boundary induced the migration of the grain boundary plane in the direction normal to the boundary plane and the migration continued as long as the dislocations merged onto the grain boundary plane. The detailed mechanism of the conservative motion of atoms at the gram boundary was associated with the geometric feature of the ∑ = 5 (210) grain boundary.

  • PDF

Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석)

  • Kang, Ki-Jun;Kim, Jang-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.417-425
    • /
    • 2007
  • The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.

A Study of Stability for Field Robot using Energy Stability Level Method (에너지안정성 레벨을 이용한 필드로봇의 안정성에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.22-30
    • /
    • 2014
  • In this research, the energy stability level method is used for examining the stable state of Field Robot under effects of swing motion, at particular postures of manipulator, and terrain conditions. The energy stability level is calculated by using the dynamic models of Field Robot, subjected to the concept of equilibrium plane and support boundary. The results, simulated by using computing program for estimating the potential overturning of Field Robot, supply useful predictions of stability analysis for designers and operators.

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Kim Chang-Boo;Park Jung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.459-466
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

  • PDF

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.

A study of the nonlinear dynamic instability of hybrid cable dome structures

  • Kim, Seung-Deog;Kim, Hyung-Seok;Kang, Moon-Myung
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.653-668
    • /
    • 2003
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load have been published. But, there have been few papers related to the dynamic instability of hybrid cable domes. In this study, the dynamic instability of hybrid cable domes considering geometric nonlinearity is investigated by a numerical method. The characteristic structural behaviour of a cable dome shows a strong nonlinearity, so we determine the shape of a cable dome by applying initial stress and examine the indirect buckling mechanism under dynamic external forces. The dynamic critical loads are determined by the numerical integration of the nonlinear equation of motion, and the indirect buckling is examined by using the phase plane to investigate the occurrence of chaos.

Change and Development of Therapeutic Exercise (운동치료의 변화와 발전)

  • Bae, Sung-Soo;Kim, Seung-Joon;Lee, Keun-Heui
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.751-760
    • /
    • 2001
  • Therapeutic exercise had developed with human being. It depend upon development of physiology, anatomy, kinesiology and biomechanics. There are two categories in therapeutic exorcise. One is classical therapeutic exercise which is a activity of one muscle group, one axis and one plane motion. It is ROM, FRE. osteokinematics, arthrokinematics. Another is neurophysiological approach which is multi muscle group, multi axis and plane exercise. It is PNF and Bobath that start from 1940 to early 1950. Classical therapeutic exorcise develop from ROM to osteokinematics and arthrokinematics. It is foundation of the joint mobilization and orthopaedic manual physical therapy. Neurophysiological therapeutic approaching has more theory and skills than before. Bobath methods had changed from reflex-inhibiting posture to key points of control and added the theory of musculoskeletal, biomechanics, motor behaviour and cognition. We call it motor control.

  • PDF

Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake (MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상)

  • Ahn K.K.;Song J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF