• Title/Summary/Keyword: Plane of motion

Search Result 785, Processing Time 0.031 seconds

A Study on Stable Motion Control of Biped Robot with 18 Joints (18관절 2족보행 로봇의 안정한 모션제어에 관한연구)

  • Park, Youl-Moon;Thu, Le Xuan;Won, Jong-Beom;Park, Sung-Jun;Kim, Yong-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • This paper describes the obstacle avoidance architecture to walk safely around in factory and home environment, and presents methods for path planning and obstacle avoidance for the humanoid robot. Solving the problem of obstacle avoidance for a humanoid robot in an unstructured environment is a big challenge, because the robot can easily lose its stability or fall down if it hits or steps on an obstacle. We briefly overview the general software architecture composed of perception, short and long term memory, behavior control, and motion control, and emphasize on our methods for obstacle detection by plane extraction, occupancy grid mapping, and path planning. A main technological target is to autonomously explore and wander around in home environments as well as to communicate with humans.

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

Model-based subpixed motion estimation for image sequence compression (도영상 압축을 위한 모델 기반 부화소 단위 움직임 추정 기법)

  • 서정욱;정제창
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.130-140
    • /
    • 1998
  • This paper presents a method to estimate subpixel accuracy motion vectors using a mathermatical model withoug interpolation. the proposed method decides the coefficients of mathematical model, which represents the motion vector which is achieved by full search. And then the proposed method estimates subpixel accuracy motion vector from achieved mathematical model. Step by step mathematical models such as type 1, type 2, type 3, modified bype 2, modified type 3, and Partial Interpolation type 3 are presented. In type 1, quadratic polynomial, which has 9 unknown coefficients and models the 3by 3 pixel plane, is used to get the subpixel accuracy motion vectors by inverse matrix solution. In type 2 and 3, each quadratic polynomial which is simplified from type 1 has 5 and 6 unknown coefficients and is used by least square solution. Modified type 2 and modified type 3 are enhanced models by weighting only 5 pixels out of 9. P.I. type 3 is more accurate method by partial interpolation around subpixel which isachieved by type 3. LThese simulation results show that the more delicate model has the better performance and modified models which are simplified have excellent performance with reduced computational complexity.

  • PDF

Automatic Virtual Camera Control Using Motion Area (모션 면적을 이용한 버추얼 카메라의 자동 제어 기법)

  • Kwon, Ji-Yong;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.2
    • /
    • pp.9-17
    • /
    • 2008
  • We propose a method to determine camera parameters for character motion, which confiders the motion by itself. The basic idea is to approximately compute the area swept by the motion of the character's links that are orthogonally projected onto the image plane, which we call "Motion Area". Using the motion area, we can determine good fixed camera parameters and camera paths for a given character motion in the off-line or real-time camera control. In our experimental results, we demonstrate that our camera path generation algorithms can compute a smooth moving camera path while the camera effectively displays the dynamic features of character motion. Our methods can be easily used in combination with the method for generating occlusion-free camera paths. We expect that our methods can also be utilized by the general camera planning method as one of heuristics for measuring the visual quality of the scenes that include dynamically moving characters.

  • PDF

Multi-resolution Motion Estimation Algorithm Using Adaptive Search Region (적응적 탐색영역을 이용한 다중해상도 움직임 추정 방법)

  • 최정현;이경환;이법기;정원식;정태연;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1540-1548
    • /
    • 1999
  • We propose a multi-resolution motion estimation algorithm using adaptive search region. It is constructed in wavelet domain that a binary plane which represents the potential motion areas(PMA's) based on the temporal redundancy between video frames, and motion estimation is processed in the PMA's. We reduce the PMA's gradually as the resolution level is higher, considering the distribution of the energy in subband layers and the complexity. As compared with EMRME(enhanced multi-resolution motion estimation) method[7], simulation results show that computational amount and bit rate reduced to about 33 ~46 % and 10 ~l8% respectively in active image with similar PSNR, and computational amount reduced to about 37 ~65 % in small notion image with similar PSNR and bit rate.

  • PDF

Robot motion planning for time-varying obstacle avoidance using distance function (거리 함수를 이용한 로보트의 시변 장애물 회피 동작계획)

  • 전흥주;고낙용;남윤석;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1034-1039
    • /
    • 1991
  • A robot motion planning algorithm for time-varying obstacle avoidance is proposed. The robot motion planning problem is replaced with the optimization problem by using the distance function with the divided configuration space. To divide the configuration space, the polar coordinate system is used. For each divided configuration space, the admissible region where the robot can reach without collisions is obtained using the distance function. For an object moving in a plane, the admissible region is described by linear constraints on the polar coordinate system. A numerical algorithm that solves the optimization problem is shown and the computer simulation is carried out.

  • PDF

The Comparative Study on Age-associated Gait Analysis in Normal Korean (우리나라 연령별 보행분석 비교연구)

  • Yoon, Na-Mi;Yoon, Hee-Jong;Park, Jang-Sung;Jeong, Hwa-Su;Kim, Geon
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose: This study was done to establish reference data for temporo-spatial, kinematic and kinetic parameters for normal Koreans as they age. Methods: Normal adults and children without a previous history of musculoskeletal problems were enrolled in this study. The normal subjects were divided by age into three groups: Group I: children ($11.95{\pm}0.29$ years); Group II: young adults ($23.90{\pm}3.67$ years); Group III: older adults ($71.40{\pm}4.08$ years). The temporo-spatial and kinematic data were measured using 6 MX3 cameras while each subject walked through a 10 m walkway at a self-selected speed. The kinetic data were measured using 2 force plates and were calculated by inverse dynamics. Results: Motion patterns are typically associated with a specific phase of the gait cycle. Our results were as follows: 1. There were significant differences between the different age groups in temporo-spatial parameters such as cadence, double support, time of foot off, stride length, step length, and walking speed. 2. There were significant differences between the groups in kinematic parameters such as range of motion (ROM) of the hip, knee and ankle in the sagittal plane, ROM of the pelvis, hip and knee in the coronal plane and ROM of the pelvis, hip and ankle in the transverse plane. 3. There were significant differences between the groups in kinetic parameters such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces. Conclusion: The results of this study can be utilized (a) as a reference for kinematic and kinetic data of gait analysis in normal Koreans, and (b) as an aide in evaluating and treating patients who have problems relating to gait.

Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers

  • Yang, Jin;Yu, Qiangmo;Zhao, Jiangxin;Zhao, Nian;Wen, Yumei;Li, Ping
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.579-591
    • /
    • 2015
  • This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it's free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester's voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with $g=9.8ms^{-2}$).

Uncertainty for Privacy and 2-Dimensional Range Query Distortion

  • Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.210-222
    • /
    • 2011
  • In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.

Evaluation of Craniocervical Posture in the Patients with Chronic Tensional Headache (만성 긴장성 두통환자에 있어서 두경부 자세의 평가)

  • Seon-Ju Koo;Jae-Kap Choi
    • Journal of Oral Medicine and Pain
    • /
    • v.18 no.1
    • /
    • pp.9-19
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of craniocervical posture on craniomandibular disorders with chronic headache. The author measured craniocervical posture on frontal and sagittal plane with photographs for 26 headache patients, 23 TMD patients, and 27 nonpatients. Range of cervical spine motion was also measured. The bilateral electromyograms of masseter and anterior temporalis muscles were recorded at rest and during maximum clenching. The results were as follows : On the lateral view photos, eye-tragus-C7 line angle was larger and the tragus-C7-horizontal line angle was smaller in the patient groups than in the nonpatient group (p<0.05). On the frontal view photos, mouth corner line angle was larger in the headache patient group than in the nonpatient group and TMD patient group (p<0.05) Interclavicular angle was smaller in the headache patient group and TMD patient grop than in the nonpatient (p<0.01) The right and left differences of SAIC-plane distance and finger tip-plane distance were significantly larger in headache patient group than TMD patient group and nonpatient group (p<0.01, p<0.001). Cervical motion range was smaller in the TMD patient group and headache patient group than in the nonpatient group (p<-.001, p<0.05, p<0.05). The resting EMG activities of right masseter muscle were higher in the headache patient group than in the nonpatient group (p<0.05). However, the EMG activities of masseter and anterior temporalis muscles during maximal clenching were lower in the patient group than in the nonpatient grop (p<0.01). The asymmetry index of resting EMG of masseter muscles was higher in the headache patient group than nonpatient group (p<0.05).

  • PDF