• Title/Summary/Keyword: Plane Wave Analysis

Search Result 258, Processing Time 0.025 seconds

Analysis of electro encephalogram(EEG) for estimating masimum permissible exposure(MPE) of rabbit for mcirowave exposure (마이크로파에 노출될 토끼의 MPE 추정을 위한 EEG 분석)

  • 박주태;이무영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1038-1047
    • /
    • 1996
  • The effect of electromagnetic wave on the biobody is to make a possibility not increasing temperature but also inducing physiological and psychological damage which is head or backbone. Generally a vital function of hean can be estimated by the measureing of Electro Encephalogram(EEG), and achieved a response of a find stimulus which can not be defected a subjective sympton and out of reaction. In this paper, the head can be modeled according to its medium and dervated the equation of SAR distritution, and the head of rabbit is approximately modeled three layers practically and the result of each SAR distribution is illustrated. Measured EEG from the nervous system of rabbit on a plane wave irradiated an be used quantitative analysis for the electrophysiogical effect of the biobody.

  • PDF

Transient interactions between submerged elastic shells and acoustic shock waves from a moving source (움직이는 소스와 구형쉘의 상호작용 해석)

  • 이민형;이범헌;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.85-89
    • /
    • 2001
  • The problem of the transient interaction of a plane acoustic shock wave which has an infinitely steep wave front with a cylindrical or spherical elastic shell has been studied analytically from early fifties based on the integral transform and series solution techniques. Huang adopted an inverse Laplace transform, and used a finite number of terms of the infinite series expansion of the equations for the shells. In the 1990s, the results have been used by many authors for validation of computer codes. The object of this paper is to discuss the interaction between a moving source and submerged spherical shells. Since the center of source is moving the first contact location between the waves and shell changes depending on the source velocity and distance. These are considered in the analysis. Furthermore, constant source strength and decreasing strength are considered in the analysis. Radial velocities at several locations on the structure are obtained and the results are discussed.

  • PDF

Dispersion-Based Continuous Wavelet Transform for the Analysis of Elastic Waves

  • Sun, Kyung-Ho;Hong, Jin-Chul;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2147-2158
    • /
    • 2006
  • The continuous wavelet transform (CWT) has a frequency-adaptive time-frequency tiling property, which makes it popular for the analysis of dispersive elastic wave signals. However, because the time-frequency tiling of CWT is not signal-dependent, it still has some limitations in the analysis of elastic waves with spectral components that are dispersed rapidly in time. The objective of this paper is to introduce an advanced time-frequency analysis method, called the dispersion-based continuous wavelet transform (D-CWT) whose time-frequency tiling is adaptively varied according to the dispersion relation of the waves to be analyzed. In the D-CWT method, time-frequency tiling can have frequency-adaptive characteristics like CWT and adaptively rotate in the time-frequency plane depending on the local wave dispersion. Therefore, D-CWT provides higher time-frequency localization than the conventional CWT. In this work, D-CWT method is applied to the analysis of dispersive elastic waves measured in waveguide experiments and an efficient procedure to extract information on the dispersion relation hidden in a wave signal is presented. In addition, the ridge property of the present transform is investigated theoretically to show its effectiveness in analyzing highly time-varying signals. Numerical simulations and experimental results are presented to show the effectiveness of the present method.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

The Analysis of Specification of Submarine Trench Affecting the Breakwater System (방파제 시스템에 영향을 미치는 해저 Trench 준설 제원 설정의 분석)

  • Kim, Sung-Duk;Lee, Ho-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • The present study is to estimate the effect of wave height affecting at the front face of breakwater systems due to specification of submarine trench such as distance from breakwater to dredged area and width of dredge. The wave diffraction field, which is important hydraulic factor in the ocean, is considered to be two dimensional(2D) plane and the configuration of the submarine dredge on the sea bed designated by single horizontal long-rectangular pit system according to the various specific conditions of dredged locations. The numerical simulation is performed by using Green function based on the boundary integral equation and meshed at moving boundary conditions. The results of present numerical simulations are illustrated by applying the normal incidence. It is shown that the ratios of wave height at the front face of breakwater was varied by dependance of distant from breakwater to dredged area and width of dredge. It means that, when the navigation channel or pit breakwater is dredged on seabed, engineers have to consider the specification of dredge. This study can effectively be utilized for safety assessment to various breakwater systems in the ocean field and provided for safety construction of offshore structure.

Numerical Modeling of Elastic Wave Scattering in an Isotropic Medium Containing an Orthotropic Inclusion (직교이방성 함유체를 포함하는 등방성 기지에서의 탄성파 산란 수치해석 모델)

  • Lee, Jung-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.69-79
    • /
    • 2001
  • A volume integral equation method(VIEM) is applied for the effective analysis of elastic wave scattering problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only the Green's function for the unbounded isotropic matrix is Involved In their formulation for the analysis. nis new method can also be applied to general two-dimensional elastodynamic problems with arbitrary shapes and number of anisotropic inclusions. Through the analysis of plane elastodynamic problems in unbounded isotropic matrix with an orthotropic inclusion, it is established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions.

  • PDF

SONAR transducer analysis using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 사용한 쏘나 트랜스듀서의 분석)

  • 장순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1750-1753
    • /
    • 1997
  • This paper describes how the directivity pattern of the back-scattered sound pressure is distributed when a plane acoustic wave is incident on a righid spherical shell underwater. A coupled Finite Element-Boundary Element mehtod is developed as numerical technique. The result of the coupled FE-BE method is agreed with theoretical solution for algorithmic confirmation.

  • PDF

Properties of Surface Modes Used for Directional Emission from Photonic Crystal Waveguides

  • Chung, K.B.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Directional emission of light exiting a photonic crystal waveguide by a coherent action of radiative surface modes was recently demonstrated, and subsequently the substantial enhancement of the directional emission was achieved by engineering the surface and adjusting relevant parameters. Here we present the analysis of surface modes causing the enhanced emission by the plane wave expansion method and the finite-difference time-domain method. In particular, surface band structures are calculated for nonradiative and radiative surface modes, respectively, and intensity profiles of some representative modes for nonradiative and radiative cases are given.

Integrated Circuit(IC) Package Analysis, Modeling, and Design for Resonance Reduction (공진현상 감소를 위한 집적회로 패키지 설계 및 모델링)

  • 안덕근;어영선;심종인
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.133-136
    • /
    • 2001
  • A new package design method to reduce resonance effect due to an IC package is represented. Frequency-variant circuit model of the power/ground plane was developed to accurately reflect the resonance. The circuit model is benchmarked with a full wave simulation, thereby verifying its accuracy. Then it was shown that the proposed technique can efficiently reduce the resonance due to the IC package.

  • PDF

An Application of the plane wave theory for the analysis of the automobile intake system (자동차 흡기계 해석에서의 평면파 이론 적용)

  • 이장명;임학종;김민진;정병인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-465
    • /
    • 1997
  • In the begining stage of development of a new automobile, decision of appropriate positions and room of resonators is important to NVH engineers. To find optimized positions of resonators of an automotive intake system, numerical approach such as acoustic FEM or BEM and experimental work are possible. However, either method requires many efforts and time to prepare a numerical or a real model. This research demonstrates easy way to design an adequate intake system.

  • PDF