• Title/Summary/Keyword: Plane Tracking

Search Result 179, Processing Time 0.033 seconds

Improvement of Plane Tracking Accuracy in AR Game Using Magnetic Field Sensor (자기장 센서를 사용한 AR 게임에서의 평면 추적 정확도 개선)

  • Lee, Won-Jun;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.19 no.5
    • /
    • pp.91-102
    • /
    • 2019
  • In this paper, we propose an improved method of plane tracking in developing AR games for smartphones using magnetic field sensor. The previous method based on ARCore is a VIO method using a mixture of SLAM and IMU of smartphones. The disadvantages of accelerometers and gyroscopes in IMUs cause errors in tracking the plane. We propose an improved method of planar tracking by adding the magnetic field sensor as well as the existing IMU sensors. Experimental results shows that our method reduces the error of the smartphone posture estimation.

Robust Position Tracking for Position-Based Visual Servoing and Its Application to Dual-Arm Task (위치기반 비주얼 서보잉을 위한 견실한 위치 추적 및 양팔 로봇의 조작작업에의 응용)

  • Kim, Chan-O;Choi, Sung;Cheong, Joo-No;Yang, Gwang-Woong;Kim, Hong-Seo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.129-136
    • /
    • 2007
  • This paper introduces a position-based robust visual servoing method which is developed for operation of a human-like robot with two arms. The proposed visual servoing method utilizes SIFT algorithm for object detection and CAMSHIFT algorithm for object tracking. While the conventional CAMSHIFT has been used mainly for object tracking in a 2D image plane, we extend its usage for object tracking in 3D space, by combining the results of CAMSHIFT for two image plane of a stereo camera. This approach shows a robust and dependable result. Once the robot's task is defined based on the extracted 3D information, the robot is commanded to carry out the task. We conduct several position-based visual servoing tasks and compare performances under different conditions. The results show that the proposed visual tracking algorithm is simple but very effective for position-based visual servoing.

  • PDF

Controller Design for Object Tracking with an Active Camera (능동 카메라 기반의 물체 추적 제어기 설계)

  • Youn, Su-Jin;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

A Gaze Tracking based on the Head Pose in Computer Monitor (얼굴 방향에 기반을 둔 컴퓨터 화면 응시점 추적)

  • 오승환;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.227-230
    • /
    • 2002
  • In this paper we concentrate on overall direction of the gaze based on a head pose for human computer interaction. To decide a gaze direction of user in a image, it is important to pick up facial feature exactly. For this, we binarize the input image and search two eyes and the mouth through the similarity of each block ( aspect ratio, size, and average gray value ) and geometric information of face at the binarized image. We create a imaginary plane on the line made by features of the real face and the pin hole of the camera to decide the head orientation. We call it the virtual facial plane. The position of a virtual facial plane is estimated through projected facial feature on the image plane. We find a gaze direction using the surface normal vector of the virtual facial plane. This study using popular PC camera will contribute practical usage of gaze tracking technology.

  • PDF

ACTUATION CHARACTERISTICS OF A MICROMIRROR FOR FINE-TRACKING (미세 트랙킹을 위한 마이크로미러 액튜에이터의 구동 특성)

  • Yee, Young-Joo;Bu, Jong-Uk;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1521-1527
    • /
    • 2000
  • A micromirror actuated by piezoelectric unimorph cantilevers is proposed as a tine-tracking device for high-density optical data storage. Bending motions of the metal/PZT/metal unimorphs translate an integrated micromirror along the out-of-plane vertical direction. The micromirror alters the optical path of the incident laser beam and linearly steers the reflected laser beam by its out-of-plane parallel actuation. Numerical analysis shows that the actuated micromirror can satisfy the tracking speed imposed by the requirement on the access time for the high-density optical data storage up to few tens Gbitlin2 owing to the light mass of the micromirror. In this paper, preliminary characteristics of the micro-machined PZT actuated micromirror (PAM) are reported. Only a 360 nm-thick PZT film deposited by sol-gel process shows both good electrical and mechanical characteristics for the fine-tracking actuator. The micromirror can be easily actuated up to several micrometers under low voltage operation condition well below 10 volts.

  • PDF

Realization for Moving Object Tracking System in Two Dimensional Plane using Stereo Line CCD

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sun, Min-Gui;Sclabassi, Robert
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • A realization for moving object detecting and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. Instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution and mean error is 1.89%, and enables to track a moving path of object per 100ms period.

  • PDF

The Evaluation of Tracking and Erosion Resistance of Silicone Rubber for Outdoor Use by the Inclined-Plane Method (경사평면법에 의한 옥외용 실리콘고우의 내트래킹성 및 내침식성 평가)

  • Kim, J.H.;Song, W.C.;Park, Y.G.;Kim, H.G.;Kim, I.S.;Han, S.W.;Cho, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1500-1502
    • /
    • 1997
  • We investigated the tracking and erosion resistance of the silicone rubber by Inclined-Plane Method. And, with the variation of the accelerated conditions such as the applied voltage and composition of contaminant, the change of the tracking characteristics according to such conditions was evaluated. The leakage current significantly increases with the increasing voltage, but the weight loss remains almost the same. The voltage above 5.0 kV isn't recommended because tracking breakdown occurs as fast as it does without erosion, and the typical discharge waveform was the form of rectifying wave.

  • PDF

Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi (RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어)

  • Kim, Young-Shik;Lee, Ji-Hong;Kim, Jin-Ha;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

Rainstorm Tracking Using Statistical Analysis Method (통계적 기법을 이용한 국지성집중호우의 이동경로 분석)

  • Kim Sooyoung;Nam Woo-Sung;Heo Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.194-198
    • /
    • 2005
  • Although the rainstorm causes local damage on large scale, it is difficult to predict the movement of the rainstorm exactly. In order to reduce the rainstorm damage of the rainstorm, it is necessary to analyze the path of the rainstorm using various statistical methods. In addition, efficient time interval of rainfall observation for the analysis of the rainstorm movement can be derived by applying various statistical methods to rainfall data. In this study, the rainstorm tracking using statistical method is performed for various types of rainfall data. For the tracking of the rainstorm, the methods of temporal distribution, inclined Plane equations, and cross correlation were applied for various types of data including electromagnetic rainfall gauge data and AWS data. The speed and direction of each method were compared with those of real rainfall movement. In addition, the effective time interval of rainfall observation for the analysis of the rainstorm movement was also investigated for the selected time intervals 10, 20, 30, 40, 50, and 60 minutes. As a result, the absolute relative errors of the method of inclined plane equations are smaller than those of other methods in case of electromagnetic rainfall gauges data. The absolute relative errors of the method of cross correlation are smaller than those of other methods in case of AWS data. The absolute relative errors of 30 minutes or less than 30 minutes are smaller than those of other time intervals.

  • PDF

Experimental Studies on Decentralized Neural Networks Using Reference Compensation Technique For Controlling 2-DOF Inverted Pendulum Based on Velocity Estimation (속도추정 기반의 2자유도 도립진자의 안정화를 위한 입력보상 방식의 분산 신경망 제어기에 관한 실험적 연구)

  • Cho, Hyun-Taek;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • In this paper, the decentralized neural network control of the reference compensation technique is proposed to control a 2-DOF inverted pendulum on an x-y plane. The cart with the 2-DOF inverted pendulum moves on the x-y plane and the 2-DOF inverted pendulum rotates freely on the x-y axis. Since the 2-DOF inverted pendulum is divided into two 1-DOF inverted pendulums, the decentralized neural network control is applied not only to balance the angle of pendulum, but also to control the position tracking of the cart. Especially, a circular trajectory tracking is tested for position tracking control of the cart while maintaining the angle of the pendulum. Experimental results show that position control of the inverted pendulum system is successful.