• Title/Summary/Keyword: Planar monopole

Search Result 111, Processing Time 0.028 seconds

Design of Circular Ring Antenna with Half-Circular Strip for WLAN/WiMAX Applications (WLAN/WiMAX 시스템에 적용 가능한 반원 스트립 구조를 갖는 원형 링 안테나의 설계)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.417-424
    • /
    • 2014
  • In this paper, a dual-band circular ring monopole antenna with semi-circular strip for WLAN(Wireless Local Area Networks)/WiMAX(World interoperability for Microwave Access) applications. The proposed antenna is based on a planar monopole design, and composed of half circular strip for dual-band operation which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Design and Manufacture of Modified Circular Ring antenna for WLAN/WiMAX Applications (WLAN/WiMAX 시스템에 적용 가능한 변형된 원형 링 안테나 설계와 제작)

  • Lim, Dae-Soo;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.268-275
    • /
    • 2014
  • In this paper, a dual-band circular ring monopole antenna with stub and ground slot for WLAN(Wireless Local Area Networks)/WiMAX(World interoperability for Microwave Access) applications. The proposed antenna is based on a planar monopole design, and composed of one circular ring of radiating patch, cross strip in circular ring, modified feed line, and two rectangular slot in the ground plane for triple-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are determined for WLAN/WiMAX application.

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.

Designs on Tri-band Antenna for Wireless Communication in a Ship (선박내 무선통신을 위한 삼중대역 안테나 설계)

  • Jo, Sung-Sik;Ju, Yang-Ro;Lim, Tae-Kyun;Jang, Eun-Sil;Kim, Hun;Han, Hang-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.151-153
    • /
    • 2010
  • In this paper, the tri-band planar monopole microstrip antenna which stimulaneously meets the three bands such as TRS, WLAN and DMB is designed. The designed antenna size was smaller using CPW-fed structure that shows a ground-plane and a patch-plane are existed at one layer. The proposed antenna is designed on FR-4 substrate with a relative dielectric constant 4.3, thickness of 1.5mm and tangent loss 0.04. The designed antenna shows that VSWR is below 2 and has good return loss below -10dB over the three bandwidths.

  • PDF

Design of Dual Band-Notched UWB Antenna with the Hilbert-Curve Slots (힐버트 곡선 슬롯을 이용한 이중 대역 저지 UWB 안테나 설계)

  • Kim, Dang-Oh;Kim, Che-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1184-1187
    • /
    • 2011
  • In this letter, a planar monopole UWB antenna with dual band-notched characteristics is proposed. The band-stop characteristics is realized by embedding the 1st/3rd order Hilbert-curve slots on the patch. With the dimension adjustment of each Hilbert-curve slots, the band rejection from 3.3 to 3.7 GHz and from 5.3 to 6 GHz can be accomplished easily. The VSWR and radiation pattern of the fabricated antenna are measured, and the proposed antenna would be adequate to a UWB applications.

Design of a Pot-Shaped Monopole Antenna with Dual Band Notched Characteristics for UWB Application

  • Mok, Kwang Yun;Rhee, Young Chul;Yoon, Joong Han
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • A compact planar microstrip-fed ultra-wideband (UWB) antenna with a dual band-notched for UWB application is presented and analyzed. By inserting a U-shaped slot and inverted U-shaped slot into the pot-shaped radiator, two notched bands are achieved. By optimizing the width and length of the U-shaped slots and inverted U-shaped slot, a desired bandwidth of voltage standing wave ratio (VSWR) less than 2.0 can be achieved, ranging from UWB bands with notched dual bands. The proposed antenna is fabricated on an inexpensive FR-4 substrate with overall dimensions of $28.0mm{\times}39.5mm$. The measured results confirm that the proposed antenna covers from 1.775 to over 13.075 GHz with two rejection bands of around 3.325-3.925 GHz and 5.3125-6.025 GHz. In addition, the proposed antenna showed good radiation characteristics and gains in the UWB bands.

Design of Broadband Planar Monopole Antenna (광대역 평면형 모노폴 안테나의 설계)

  • Lee Yun-Kyung;Yoon Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.359-365
    • /
    • 2005
  • This paper designed a very low profle, light and broadband internal antenna for operating at PCS, IMT-2000 and Wibro bands. The proposed antenna can be reduced the size by using shorting-pin and a broadband characteristic is obtained by using slit. It is optimized by using the CST Microwave Studio commercial software based on the FIA(Finite Integration Algorithm) and PBA(Perfect Boundary Approximation) and then fabricated and measured. As a result of measurement, the bandwidth(VSWR<2.5) is $40.8\;\%$ at $1.934\;\cal{GHz}$ and the size of antenna is 3$30\;\cal{mm}\times10\;\cal{mm}\times0.2\;\cal{mm}$.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.

Compact Antenna Design for the UWB Lower Half-Band WVAN Gbps Data-Rate Transceiver (UWB 하반 대역 WVAN Gbps 데이터 전송률 트랜시버용 소형 광대역 안테나의 설계)

  • Eom, Da-Jeong;Lim, Dong-Jin;Kahng, Sung-Tek;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • In this paper, a compact antenna is designed for the UWB lower half-band WVAN Gbps data-rate transceiver. The proposed antenna broadens the bandwidth less than -10 dB by placing the ring stubs and an open stub on the rectangular monopole above the partial ground and creating multiple resonant current paths. The designed antenna goes through the electromagnetic simulation and is fabricated and the implemented antenna has the characteristics of the return loss lower than -10 dB, the antenna gain greater than 5 dBi, and the efficiency over 80 % in the UWB lower half-band ranging from 3.197 GHz to 4.732 GHz. Therefore, it is thought that the proposed antenna is suitable for the size-reduced and excellently performing wireless communication transceiver.