• Title/Summary/Keyword: Planar Monopole Antenna

Search Result 109, Processing Time 0.026 seconds

The Design and SAR Analysis of the Spiral Planar Monopole Antenna for Dual-Band (이중 대역 스파이럴 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Kim, Nam;Park, Sang-Myeong;Kim, Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1370-1382
    • /
    • 2007
  • In this paper, the spiral planar monopole antenna mounted on a Cellular/WCDMA handset is designed. Frequency characteristics is optimized with various design parameters. The two spiral lines are adopted in order to implement Cellular frequency bandwidth and WCDMA frequency bandwidth. The bandwidth of the realized antenna is $0.805{\sim}0.892$ GHz(10 %) and $1.867{\sim}2.302$ GHz(21 %) for VSWR${\leq}2$ which contain the proposed frequency bandwidth. In human head, the simulated value on 1 g and 10 g averaged SAR caused by electromagnetic wave radiated in the designed antenna is compared with the measured value. As a result, the measured values of 1 g and 10 g averaged SAR were similar to the simulated values, which were lower than the SAR guidelines.

An UWB Design of Plane Bow-Tie Monopole Antenna (평면형 보우타이 모노폴 안테나의 초광대역 설계)

  • Kim, Tae-Woo;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1212-1218
    • /
    • 2014
  • This paper proposes a planar bow-tie UWB antenna by modifying the ground patch of a reference bowtie-monopole antenna satisfying low band of UWB. The proposed antenna was implemented with five-angled ground patch to be operated in whole UWB band, while the reference antenna had a ground patch of half circle type. The measured return loss satisfies less than -10 dB in 3.1~10.6 GHz, except 4.9~5.8 GHz rejection band. The measured radiation pattern is almost the same with that of the monopole antenna. The radiation gain reduction is about 8 dB at rejection band.

A Simple Planar Heptaband Antenna with a Coupling Feed for 4G Mobile Applications

  • Hong, Youngtaek;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.239-244
    • /
    • 2015
  • A simple planar heptaband antenna with a coupling feed for 4G mobile applications is proposed. This antenna consists of a folded monopole and a feed strip line on the top plane and an L-shaped line with a coupling plate on the bottom plane. The antenna provides a wide bandwidth to cover the LTE/GSM/UMTS heptaband operation. The measured 6-dB return loss bandwidth is 152 MHz (820-972 MHz) in the lowfrequency band and 1,150 MHz (1,600-2,750 MHz) in the high-frequency band. The overall dimensions of the proposed antenna are $60mm{\times}105mm{\times}1.2mm$.

The Design and Fabrication of the Triple-Band Planar Monopole Antenna for Coupled U Patch Line and Rectangular Patch (U자형 패치 라인과 사각 패치를 결합한 삼중 대역 평면형 모노폴 안테나 설계 및 제작)

  • Lee, Sung-Hun;Lee, Seung-Woo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.745-753
    • /
    • 2011
  • In this paper, the planar monopole antenna for multi-band service is proposed. The proposed antenna, which is a rectangular patch antenna with a U-shaped slit based on a monopole antenna for wide bandwidth characteristic, is designed and analyzed. The antenna size has been miniaturized by using the U-shaped slit. The frequency characteristics are modified and optimized by varying specific parameters. To obtain desired frequency bands, the U-shaped slit and patch lines have been applied. Whole antenna dimensions including the ground plane are $35{\times}50{\times}1\;mm^3$, and the antenna part size is $35{\times}27\;mm^2$. It is fabricated on the FR-4 substrate(${\epsilon}_r=4.4$) using a microstrip line of $50{\Omega}$ for impedance matching. For the measured results, the impedance bandwidth below a VSWR of 2 is 790~916 MHz, 1.74~2.14 GHz, and 2.36~3.13 GHz. The fabricated antenna is satisfied with the aimed impedance bandwidth in GSM/DCS/US-PCS/UMTS/Bluetooth/S-DMB applications.

A Metamaterial-Based Handset Antenna with the SAR Reduction

  • Kahng, Sungtek;Kahng, Kyungseok;Yang, Inkyu;Park, Taejoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.622-627
    • /
    • 2014
  • A method to reduce the specific absorption rate(SAR) of the antenna for WiMAX mobile communication is proposed in this paper. The SAR reduction is achieved by miniaturizing the physical size of the antenna for the given resonance frequency by devising a metamaterial-composite right- and left-handed(CRLH) configuration-based radiator much smaller than the quarter-guided wavelength adopted a lot in the conventional planar inverted F antenna(PIFA) or modified monopole antenna. The proposed antenna is placed near the head-phantom and its SAR is evaluated by the full-wave simulations(SEMCAD X), where the metamaterial-inspired antenna is shown to have the lower value than a modified monopole as the reference in terms of the SAR.

Design of VHF Band Meander Sleeve Monopole Antenna for Satellite Communications (위성통신용 VHF대역 미앤더 슬리브 모노폴 안테나 설계)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we proposed a meander sleeve monopole antenna for low earth orbit satellite communications. The antenna has broadband property with the planar monopole and ground of meander sleeve. Monopole and ground conductors of the antenna are on the same plane, and exited through coaxial cable feeding. In order to confirm the property of antenna parameters, it was used a commercial software, HFSS, For the antenna fabrication, a FR4 dielectric substrate has a dielectric constant of 4.4 was used. The size of the antenna was $600mm{\times}20mm{\times}1.6mm$. Frequency band of the fabricated antenna was 130MHz~151MHz, and the bandwidth was 20MHz. Measurement results of the fabricated antenna, the return loss is more than -10dB return loss in the band could be obtained. Radiation pattern has a maximum gain of 2.64dBi value.

Design and Fabrication of Dual-Ring Monopole Antenna for Wideband Characteristics (광대역 특성을 갖는 이중 원형 링 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1285-1291
    • /
    • 2013
  • In this paper, a double circular ring monopole antenna for wideband applications is designed and fabricated. The proposed antenna is based on a planar monopole design, and composed of double circular ring of radiating patches and ground plane to obtain the wideband characteristics. To get the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that effect antenna characteristics. Using the obtained parameters, the proposed antenna is fabricated. The fabricated antenna is measured at the operating frequencies, and the return loss coefficient, gain, and radiation patterns are determined. The results of measurement, -10dB impedance bandwidth, measured return loss is 4,530 MHz(2,510-7,040 MHz) and antenna peak and average gains for the frequencies are obtained 0.71~3.38 dBi, -3.85~0.3 dBi, respectively. In case of radiation patterns, the proposed antenna displays nearly omnidirectional radiation characteristics in the E-plane, and monopole-like radiation pattern characteristics in the H-plane.

Compact Planar Antenna for Mobile Handset Applications

  • Sung, Woo Hee;Shin, Dong Gi;Lee, Young Soon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2019
  • In this paper, we describe the procedure of simulation design and measured results of a compact planar antenna for handset applications. The broad bandwidth covering the interested frequency band for mobile handset is achieved by introduction of an open ended L-shaped slot which is newly proposed and corresponds to the monopole slot. In order to minimize the impact on circuit part placement, the proposed antenna is placed on the ground plane edge of PCB with size of 60×65 mm2. The measurement result for 10dB impedance bandwidths is 640 MHz (1.7~2.34 GHz), covering the required bandwidths for DCS (Digital Cellular System)-1800 (1710 ~ 1880 MHz) / IMT (International Mobile Telecommunication)-2000 (1885 ~ 2200 MHz) bands. In particular, we would like to emphasize the proposed antenna has an omnidirectional radiation pattern suitable for commercial wireless communication.

Design of Triple-Band Microstrip Antenna for WLAN/WiMAX (WLAN/WiMAX용 삼중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Goen;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • In this paper, we designed monopole microstrip antenna for WLAN/WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Multi-band Folded Monopole Internal Antenna for Mobile Handset Applications (이동통신 단말기용 다중대역 폴디드 모노폴 내장형 안테나)

  • Kang, Yoon-Ho;Rhyu, Han-Phil;Kong, Ki-Hyun;Park, Myun-Joo;Cheong, Young-Seek;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • In this paper, a multi-band folded planar monopole internal antenna for mobile handset applications is proposed. The proposed antenna has multi-resonances, which is different from a conventional folded monopole antenna, and it provides a wide bandwidth at high frequency bands. The measured impedance bandwidth (VSWR < 3) is 180 MHz and 1880 MHz in lower and higher frequency bands, respectively. The proposed antenna can effectively cover most wireless communication bands including CDMA, GSM, GPS, DCS, PCS, and W-CDMA, WiBro and S-DMB.

  • PDF