• Title/Summary/Keyword: Planar Laser-Induced Fluorescence

Search Result 67, Processing Time 0.024 seconds

Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰)

  • Choi Gyung-Min;Tanahashi Mamoru;Miyauchi Toshio.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF

Visualization of Interacting Parallel Supersonic Free Jets using NO-LIF

  • Niimi Tomohide;Ishida Toshihiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.36-43
    • /
    • 2001
  • The flow field structures of two interacting parallel supersonic free jets are studied by flow visualization using planar laser-induced fluorescence of NO seeded in nitrogen gas. The experiments are carried out for several distances between two orifice centers and for various ratios of the pressure in the reservoir to that in the expansion chamber. The flow fields are visualized mainly on the plane including two jet centerlines and its characteristic shock system, especially a cell structure formed secondly by interaction of two jets, are analyzed. The positions of the normal shock depending on the pressure ratios are also compared.

  • PDF

A Study on Mixing Characterization of Unlike-doublet Injector for Liquid Rocket Engine (액체로켓용 Unlike-doublet 인젝터의 혼합특성 연구)

  • Lee, In-Su;Jung, Ki-Hoon;Lim, Byoung-Gjik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • The mixing of propellant and its mass distribution of unlike-doublet impinging injector, which is known to affect the combustion efficiency significantly, have been studied using PLIF(Planar Laser Induced Fluorescence). The results show that fuel jet penetrates considerably into the oxidizer jet at impinging point as variation of momentum ratio. and then stream flows inclined because of variation of momentum ratio. Consequently, the mixing efficiency shows that maximum efficiency is at MR=3. after MR=3, mining efficiency decreases slightly.

  • PDF

Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air (PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

Supersonic Combustion Studies for SCRamjet Engines

  • Driscoll, James F.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.1-14
    • /
    • 2004
  • Experiments were performed in order to examine the stability of hydrocarbon-fueled flames in cavity flameholders in supersonic airflows. Methane and ethylene were burned in two different cavity configurations having aft walls ramped at 22.5 and 90$^{\circ}$. Air stagnation temperatures were 590 K at Mach 2 and 640 K at Mach 3. Lean blowout limits showed dependence on the air mass flowrates. Visual observations, planar laser induced fluorescence (PLIF) of nitric oxide (NO), and Schlieren imaging were used to investigate these phenomena. Large differences were noted between cavity floor and cavity ramp injection schemes. Cavity ramp injection provided better performance in most cases. Ethylene pilots have a wider range of stable operation than methane. Fuel flowrates at ignition showed similar trends as lean blowout limits, but higher flowrates were required.

  • PDF

In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine (희박연소 엔진의 연소실내 연료분포 특성 연구)

  • Kim, K.S.;Lee, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF

Experimental Study on the Stability Enhancement of Nonpremixed Flames in Coflow Jets (동축류 제트에서 전기장에 의한 화염 안정성 증진에 대한 실험적 연구)

  • Won, Sang-Hee;Ryu, Seung-Kwan;Chung, Suk-Ho;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.191-196
    • /
    • 2007
  • The enhancement of flame stability in coflow jets has been investigated experimentally by observing the liftoff behaviors of nonpremixed propane and methane flames in the electric fields. The liftoff or blowoff velocities has been measured in terms of the applied AC voltages and frequency. The experimental results showed that the liftoff velocity could be extended significantly just by applying the high voltage to the central fuel nozzle both for propane and methane. As increasing the applied voltage, the liftoff velocity increases almost linearly with the applied voltage and have its maximum value at certain applied voltage. After that, the liftoff velocity showed decrease with the applied voltage. Through the experimental observation, we found that the liftoff velocity could be correlated well with the applied voltage and frequency in the linearly increasing regime. And after having maximum in the liftoff velocity, it was observed that the liftoff velocity decreases with the applied voltage irrespective of AC frequencies. To visualize the change of flame structure with electric fields, planar laser induced fluorescence technique was adopted, and the enhancement of flame stability has been explained based on the flame structural change in electric fields.

  • PDF

A MODEL FOR THE PENETRATION RATE OF A BOUSSINESQ STARTING FORCED PLUME

  • LAW ADRIAN WING-KEUNG;AI JIAO JIAN;YU S.C.M
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.951-951
    • /
    • 2005
  • The characteristics of Boussinesq starting forced plumes were investigated in this study. Two distinct periods in the transient plume penetration were identified, namely the Period of Flow Development (PFD) and Period of Developed Flow (PDF). PFD refers to the time period whereby the penetration rate is governed by the complex vortex dynamics initiated by the exit conditions that can include vortex coalescence, vortex leapfrogging, pinching off of the head vortex from the trailing stem and the eventual reconnection. The pinch-off and reconnection leads to an overshoot of the plume front which is a common observation reported in previous studies. The penetration rate in PDF is more predictable and depends on the continuous feeding of buoyancy and momentum into the head vortex by the trailing buoyant-jet stem. Similarity solutions are developed for PDF to describe the temporal variation of the penetration rate, by incorporating the behavior of an isolated buoyant vortex ring and recent laboratory results on the trailing buoyant jet. In particular, the variations of velocity ratios between the head vortex and trailing buoyant jet are analytically computed. To verify the similarity solutions, experiments were conducted on vertical starting forced plumes using planar laser induced fluorescence (PLIF).

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Computational Flow Analysis and Preliminary Measurement for the CANDU-6 Moderator Tank Model (CANDU-6 감속재 탱크 모형의 유동장 전산해석 및 예비측정)

  • Cha, Jae Eun;Choi, Hwa Lim;Rhee, Bo Wook;Kim, Hyoung Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.30-36
    • /
    • 2012
  • We are planning to construct a scaled-down moderator facility to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions. In the present work a preliminary experiment using a 1/40 scaled-down moderator tank has been performed to investigate the anticipated problems of the flow visualization and measurement in the planning scaled-down moderator facility. We shortly describe CFD analysis result for the 1/40 scaled-down test model and the flow measurement techniques used for this test facility under isothermal flow conditions. The Particle Image Velocimetry (PIV) method is used to visualize and measure the velocity field of water in a transparent Plexiglas tank. Planar Laser Induced Fluorescence (PLIF) technique is used to evaluate the feasibility of temperature field measurement in the range of $20-40^{\circ}C$ of water temperature using an one-color method.