• Title/Summary/Keyword: Planar Imaging Technique

Search Result 35, Processing Time 0.022 seconds

Measurement of Regional Cerebral Blood Volume in Normal Rabbits on Perfusion-weighted MR Image (MR 관류강조영상에서 정상 가토의 국소 뇌혈류량 측정)

  • 박병래;예수영;나상옥;김학진;이석홍;전계록
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.100-106
    • /
    • 2000
  • Purpose : To evaluate the usefulness of cerebral blood flow measurement applied to perfusion weighted image with short-scan time single shot gradient echo-planar technique in measuring cerebral blood volume(rCBV) of normal rabbits. Materials and methods : With 2.1-3.6 kg weighted rabbits, image is acquired when they are in supine position in children positioner. Perfusion weighted image is acquired to 44 seconds per 1 second successively. After 4 seconds later, Gd-DTPA 2ml are injected into int. jugular vein with 2 ml per second and normal saline is also injected after that. Same technique is applied 2 times per 30 minites in same rabbit. After Image is obtained in two part of cerebral cortex at vertex, convexity, in one of basal ganglia with choosing about $3-5{\textrm{mm}^2}$ areas. Curve of signal intensity changes in time sequence is drawn. After this images are transmitted by PC and software IDL, regional cerebral blood volume is measured with imaging processing program made by us. Results : With 22 of 24 rabbits, satisfactory 1-2 signal intensity versus time curve is made. Cerebral blood capacity and contrast media stay time (ST) is measured in two cerebral cortex and basal ganglia refering in parietal cerebral cortex. Mean focal cerebral blood flow capacity ratio in cortex was $0.97{\pm}0.35$ and in basal ganglia, $0.99{\pm}0.37$, mean contrast media stay time in cortex was $9.83{\pm}1.63$ sec and in basal gaiglia, $9.42{\pm}1.14$ sec, but there was no statistically significant difference between two areas ($\rho$=0.05). Conclusion : In cerebral cortex and basal ganglia, there is no difference in mean focal blood volume and mean contrast stay time. Therefore, PWI is useful in cerebral blood flow and early diagnosis, prognosis of cerebral ischemic disease. Hereafter, it is helpful in analysing cerebral blood flow changes with comparison difference in rCBV between normal tissue and ischemic tissue, and that with DWI finding in infarcted patient.

  • PDF

Artifacts Improvement by using the Echo Planar Imaging and Pre-Saturation Pulse Band techniques of Reduced Field-Of-View in Breast Magnetic Resonance Imaging Examination (유방 자기공명영상검사에서 감소된 영상영역의 에코평면영상기법과 사전포화기법 사용에 의한 인공물 개선)

  • Lee, Jaeheun;Kim, Hyunjin;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.307-314
    • /
    • 2015
  • This study was conducted in reducing the involuntary motion artifacts because of lungs and heart movements as well as the aliasing artifacts generated during the use of the reduced-FOV EPI technique while performing breast MRI. Performed on a total of 38 obesity female subjects who visited the clinic for pre-examination before surgery within the period from August 1 to November 30, 2014. The 3.0T MRI scanner equipped with a breast scanning coil. Qualitative and quantitative analyses were each used for the evaluation of the acquired images while an Paired T-test and Wilcoxon rank test were performed to check the statistical significance. The variation ratio rose by 15.69% with the additional application of a pre-saturation pulse in the lesion, by 13.72% near the lesion, and 20.63% in the fat and the contrast-to-noise ratio rose by 10.58% in and near the lesion and by 12.03% in the lesion and fat, respectively. there were increases of 22.05% and 21.42% at 0 and 1000 respectively in qulitative evaluation and growth of 16.10% in apparent diffusion coefficient. it showed a statistically significant result(p<0.05) in signal to noise ratio, contrast to noise ratio, diffusion slope coefficient and apparent diffusion coefficient. The involuntary movements artifacts that occur in the phase encoding direction and the aliasing artifacts are considered to be reduced to obtain the best image in the additional use of the pre-saturation pulse as DWI is acquired.

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF

Quantitative Assessment of Myocardial Infarction by In-111 Antimyosin Antibody (In-111-Antimyosin 항체를 이용한 심근경색의 정량적 평가)

  • Lee, Myung-Chul;Lee, Kyung-Han;Choi, Yoon-Ho;Chung, June-Key;Park, Young-Bae;Koh, Chang-Soon;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • Infarct size is a major determinant of prognosis after acute myocardial infarction. Up to date, however, clinically available tests to estimate this size have not been sufficiently accurate. Twelve lead electrocardiogram and wall motion abnormality measurement are not quantitative, and creatine phophokinase (CPK) measurement is inaccurate in the presence of reperfusion or right ventricular infarction. Methods have been developed to localize and size acute myocardial infarcts with agents that are selectively sequestered in areas of myocardial damage, but previously used agents have lacked sufficient specificity. Antibodies that bind specifically only to damaged myocardial cells may resolve this problem and provide an accurate method for noninvasively measuring infarct size. We determined the accuracy with which infarcted myocardial mass can be measured using single photon emission computed tomography (SPECT) and radiolabeled antimyosin antibodies. Seven patients with acute myocardial infarction and one stable angina patient were injected with 2 mCi of Indium-111 labeled antimyosin antibodies. Planar image and SPECT was performed 24 hours later. None of the patients had history of prior infarcts, and none had undergone reperfusion techniques prior to the study, which was done within 4 days of the attack. Planar image showed all infarct patients to have postive uptakes in the cardiac region. The location of this uptake correlated to the infarct site as indicated by electrocardiography in most of the cases. The angina patient, however, showed no such abnormal uptake. Infarct size was determined from transverse slices of the SPECT image using a 45% threshold value obtained from a phantom study. Measured infarct size ranged from 40 to 192 gr. There was significant correlation between the infarct size measured by SPECT and that estimated from serial measurements of CPK (r=0.73, p<0.05). These date suggest that acute myocardial infarct size can be accurately measured from SPECT Indium-111 antimyosin imaging. This method may be especially valuable in situations where other methods are unreliable, such as early reperfusion technique, right ventricular infarct or presence of prior infarcts.

  • PDF

Fundamental Study of Relative Measurement for Accurate Measurement of Stent Size in Computed Tomography Angiography (컴퓨터단층 혈관조영술에서 스텐트 사이즈의 정확한 측정을 위한 상대적 측정법의 기초연구)

  • Lee, Seung-Young;Hong, Joo-Wan;Kang, Su-Mi;Kim, Su-Bin;Joon, Sang-Hoon;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.713-720
    • /
    • 2019
  • The purpose of this study was to propose a new measurement method for accurate measurement of vessel diameter in computed tomography angiography(CTA). CTA test was performed after non-ionic iodine contrast agent was flowed at a constant rate to self-maded perfusion phantom. After obtaining raw data, images were reconstructed with multi-planar reconstruction(MPR) and maximal intensity projection(MIP). Diameters of vascular models were measured for each technique. Relative and conventional measurements were then compared. The mean diameter of the vascular model was closer to the actual measurement when relative measurement was used compared to that when conventional measurement was used both in MPR and MIP. Relative measurements of MPR and MIP were closer to actual measurement than those of conventional measurement (34% VS, 24%, p<0.05). The relative measurement method proposed in this study was closer to the actual measurement than the conventional measurement method. However, both test methods were still larger than actual results. Therefore, further study of relative measurement method is needed using this study as basic data.