• Title/Summary/Keyword: Planar Circuits

Search Result 62, Processing Time 0.028 seconds

Fabrication of Planar Lightwave Circuits for Optical Transceiver Connection using Glass Integrated Optics (광 송수신기 연결을 위한 유리집적광학 평면 광 회로 제작)

  • Gang, Dong-Seong;Jeon, Geum-Su;Kim, Hui-Ju;Ban, Jae-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.412-419
    • /
    • 2001
  • In accordance with the PON(passive optical network) could be setup, effective connections with light sources, optical detectors, and optical fibers are the best sensitive points to represent the efficiency of network. Therefore, in this paper we designed and fabricated optical transceiver connection chip that was consisted of channel waveguide, Y-branch, and CWDM on the 2" BK7 glass substrate. This chip can be used for 1.31/1.55${\mu}{\textrm}{m}$ CWDM network and 1.55${\mu}{\textrm}{m}$ region dense WDM network.work.

  • PDF

Comparative Performances between Hair-pin Shaped Microstrip-line Resonator and Dielectric Resonator for Injection Locked Oscillators at 11GHz

  • Lee, Du-Han;Kim, Kye-Hun;Kim, Nam-Youn;Kim, Jong-Heon;Hong, Ui-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.171-176
    • /
    • 1997
  • A hair-pin shaped microstrip-line resonator and dielectric resonator for injection-locked oscillators have been designed and fabricated for the comparative studying of their performances. In general, a commonly used dielectric resonator shows lower phase noise value than hair-pin resonator in the free-running mode. In the injection-locked mode, however, a hair-pin resonator is superior to the dielectric resonator, the wider tuning range, the 22% improved locking bandwidth, the lower noise effect, the short term stability, and the higher power level. The planar structure of a hair-pin shaped microstrip-line resonator will be easily applied to monolithic microwave integrated circuits.

  • PDF

Thermal-Aware Floorplanning with Min-cut Die Partition for 3D ICs

  • Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.635-642
    • /
    • 2014
  • Three-dimensional integrated circuits (3D ICs) implement heterogeneous systems in the same platform by stacking several planar chips vertically with through-silicon via (TSV) technology. 3D ICs have some advantages, including shorter interconnect lengths, higher integration density, and improved performance. Thermal-aware design would enhance the reliability and performance of the interconnects and devices. In this paper, we propose thermal-aware floorplanning with min-cut die partitioning for 3D ICs. The proposed min-cut die partition methodology minimizes the number of connections between partitions based on the min-cut theorem and minimizes the number of TSVs by considering a complementary set from the set of connections between two partitions when assigning the partitions to dies. Also, thermal-aware floorplanning methodology ensures a more even power distribution in the dies and reduces the peak temperature of the chip. The simulation results show that the proposed methodologies reduced the number of TSVs and the peak temperature effectively while also reducing the run-time.

An LTCC Inductor Embedding NiZn Ferrite and Its Application (NiZn 페라이트를 내장한 LTCC 인덕터 및 응용)

  • Won, Yu-June;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.534-539
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet$({\mu}_r=230)$, was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns$(7turns{\times}2layers)$, a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was developed.

A Compact Wideband Crossover Coupler with Lumped Elements

  • Kwangwon Park;Hyunkyu Lee;Iljin Lee;In-Woong Kang;Sanggeun Jeon
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.96-100
    • /
    • 2019
  • A compact wideband crossover coupler with fully lumped elements is presented. To achieve a wideband operation, a three-section branch-line structure is employed for the crossover coupler. The size is significantly minimized by replacing transmission lines with lumped elements. The measurement shows that the insertion loss, isolation, and return loss are 1.7 dB, 24 dB, and 14.5 dB, respectively, at 2 GHz. The fractional bandwidth of 20-dB isolation and 3-dB insertion loss is 27%. The size of the crossover coupler is 11 mm × 9 mm, which corresponds to 0.07λ × 0.06λ at 2 GHz. This is significantly smaller than a conventional three-section branch-line crossover coupler by 95%.

Stress-Free Pyrex-Based Optical Waveguide for Planar Lightwave Circuits on Silicon Substrate (실리콘 기판의 광집적회로를 위한 Pyrex 무응력 도파박막)

  • 문형명;정형곤;이용태;김한수;전영윤;정석종;윤선현;이형종
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.156-161
    • /
    • 1998
  • We developed aerosol flame deposition method and made stress-free Pyrex-based optical waveguide on silicon substrate using this method. Zr is doped to control the refractive index of Pyrex waveguide layers. The refractive index of the film changes from 1.460 to 1.475 as the content of Zr changes from 0 to 3 wt%. Er is doped to see the possibility of applying this Pyrex waveguide as PLC-type (Planar Lightwave Circuit) optical amplifier. The refractive index of the film changes from 1.460 to 1.465 as the content of Zr changes from 0 to 1 wt%. Light launching using a prism coupler to the fabricated waveguide showed good quality for application to PLC. The polarization dependence of refractive-index of the Pyrex film is measured to be less than $2{\times}10^{-4}$.

  • PDF

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Multi-Layer QCA 4-to-1 Multiplexer Design with Multi-Directional Input (다방위 입력이 가능한 다층구조 QCA 4-to-1 멀티플렉서 설계)

  • Jang, Woo-Yeong;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.819-824
    • /
    • 2020
  • In this paper, we propose a new multiplexer using quantum dot cellular automata (QCA), a next-generation digital circuit design technology. A multiplexer among digital circuits is a circuit that selects one of the input signals and transfers the selected input to one line. Since it is used in many circuits such as D-flip-flops, resistors, and RAM cells, research has been conducted in various ways to date. However, the previously proposed planar structure multiplexer does not consider connectivity, and therefore, when designing a large circuit, it uses an area inefficiently. There was also a multiplexer proposed as a multi-layer structure, but it does not improve the area due to not considering the interaction between cells. Therefore, in this paper, we propose a new multiplexer that improves 38% area reduction, 17% cost reduction, and connectivity using a cell-to-cell interaction and multi-layer structure.

Design and Fabrication of the Oscillator Type Active Antenna by Using Slot Coupling (슬롯결합을 이용한 발진기형 능동 안테나의 설계 및 제작)

  • Mun, Cheol;Yun, Ki-Ho;Jang, Gyu-Sang;Park, Han-Kyu;Yoon, Young-joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1997
  • In this paper, the oscillator type active antenna used as an element of active phased array antenna is designed and fabricated using slot coupling. The radiating element and active circuit are fabricated on each layer respectively and coupled electromagnetically through slot on the ground plane. This structure can solve the problems such as narrow bandwidth of microstrip antenna, spurious radiation by active circuits, and spaces for integration of the feeding circuits which are caused by integrating antennas with oscillator circuits in the same layer. The active antenna in this paper, the oscillation frequency can be tuned linearly by controlling the drain bias voltage of FET. The frequency tuning range is between 12.37 GHz to 12.65 GHz when bias voltage is varied from 3V to 9V, thus frequency tuning bandwidth is 280 MHz (2.24%). The output power of antenna is uniform within 5dB over frequency tuning range. Therefore this active antenna can be used as an element of linear or planar active phased array antennas.

  • PDF