• Title/Summary/Keyword: Planar Arrays

Search Result 63, Processing Time 0.026 seconds

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.

New Elements Concentrated Planar Fractal Antenna Arrays for Celestial Surveillance and Wireless Communications

  • Jabbar, Ahmed Najah
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.849-856
    • /
    • 2011
  • This research introduces three new fractal array configurations that have superior performance over the well-known Sierpinski fractal array. These arrays are based on the fractal shapes Dragon, Twig, and a new shape which will be called Flap fractal. Their superiority comes from the low side lobe level and/or the wide angle between the main lobe and the side lobes, which improves the signal-to-intersymbol interference and signal-to-noise ratio. Their performance is compared to the known array configurations: uniform, random, and Sierpinski fractal arrays.

An Efficient Separable Weighting Method for Sonar Systems with Non-Separable Planar Arrays (소나시스템 비분리 평면센서배열의 효율적인 분리 가중치 기법)

  • Do, Dae-Won;Kim, Woo-Sik;Lee, Dong-Hun;Kim, Hyung-Moon;Choi, Sang-Moon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.208-217
    • /
    • 2013
  • When a beamforming can be processed separately in horizontal and vertical directions with the planar arrays used in sonar systems, there are several merits such as that practically reduce the required computations and volumes. However, the common planar arrays used in sonar systems are generally non-separable, so the beamforming with separable weighting results in the differences between the desired beam characteristics and the resultant beam characteristics. In this paper, we propose a new separable weighting method which can achieve the wanted beam characteristics by using the separable weights in horizontal and vertical directions for the non-separable planar arrays. In order to achieve the wanted beam characteristics, the proposed method minimizes the differences between the desired weights and the resultant weights based on the number of effective sensors in horizontal and vertical directions of the planar arrays.

A Novel Measuring Method of In-plane Position of Contact-Free Planar Actuator Using Binary Grid Pattern Image (이진 격자 패턴 이미지를 이용한 비접촉식 평면 구동기의 면내 위치(x, y, $\theta$) 측정 방법)

  • 정광석;정광호;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.120-127
    • /
    • 2003
  • A novel three degrees of freedom sensing method utilizing binary grid pattern image and vision camera is presented. The binary grid pattern image is designed by Pseudo-Random Binary Arrays and referenced to encode in-plane position of a moving stage of the contact-free planar actuator. First, the yaw motion of the stage is detected using fast image processing and then the other planar positions, x and y, are decoded with a sequence of images. This method can be applied to the system that needs feedback of in-plane position, with advantages of a good accuracy and high resolution comparable with the encoder, a relatively compact structure, no friction, and a low cost. In this paper, all the procedures of the above sensing mechanism are described in detail, including simulation and experiment results.

Adaptive planar vision marker composed of LED arrays for sensing under low visibility

  • Kim, Kyukwang;Hyun, Jieum;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In image processing and robotic applications, two-dimensional (2D) black and white patterned planar markers are widely used. However, these markers are not detectable in low visibility environment and they are not changeable. This research proposes an active and adaptive marker node, which displays 2D marker patterns using light emitting diode (LED) arrays for easier recognition in the foggy or turbid underwater environments. Because each node is made to blink at a different frequency, active LED marker nodes were distinguishable from each other from a long distance without increasing the size of the marker. We expect that the proposed system can be used in various harsh conditions where the conventional marker systems are not applicable because of low visibility issues. The proposed system is still compatible with the conventional marker as the displayed patterns are identical.

Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays (ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상)

  • Lee, Sam-Dong;Kim, Kyoung-Kook;Park, Jae-Chul;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF

Reduction Characteristics of Electromagnetic Penetration through Narrow Slots in Conducting Screen by Loading Parallel Wire Arrays

  • Kim Ki-Chai;Lim Sung-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • This paper presents a method of reducing penetration of penetrated electromagnetic fields through a narrow slot with parallel wire arrays in a planar conducting screen of infinite extent. An integral equation for the aperture electric field on the narrow slot is derived and solved by applying Galerkin's method of moments. When a plane wave is excited to the narrow slot, the aperture electric field is easily controlled by the parallel wire arrays connected on the slot and therefore the magnitude of the penetrated electric field is effectively reduced by loading the parallel wire arrays. The numerical results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel wire arrays on the slot. The results of the calculated penetration electric fields are in good agreement with that of the measured results.

Planer microoptics for massively parallel aptical interconnections (대용량 광신호 연결을 위한 평판 마이크로 광학계)

  • 송석호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.43-52
    • /
    • 1995
  • For massicely parallel optical interconnections, we propose three types of planar optical configurations for crossover photonic switching netweek, backboard optical signal distribution, and high speed packet address detection. The planar overalsy allow 2-D pixel arrays located on a wafer scale intergated circuit to be interconnected in a compact and vibrationally robust configuration. By the laser writing technique surface relief of microopical Fresnel lenses and multiplex gratigs used in the planar optics are successfully fabricated.

  • PDF

Duality of Photonic Crystal Radiative Structures and Antenna Arrays

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.438-443
    • /
    • 2010
  • In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.

Equivalence Between Two Orthogonal Oriented Circular Loops and Planar Inveryed-F Antenna Array (직교형 원형 루프 안테나와 역 에프형 배열구조의 등가성 분석)

  • Kim, Jong-Sung;Park, Seung-Mo;Choi, Won-Kyu;Seong, Nak-Seon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.289-292
    • /
    • 2005
  • Two planar inverted-F antenna (PIFA) arrays are proposed as an alternative model to generate input and radiation characteristics of two orthogonal oriented circular loops, which has polarization diversity, but inherent mechanical instability of two orthogonal loops, in particular, in installation and operation conditions. Two $1\times2$ PIFA sub-arrays are orthogonally placed on a ground plane and two different feeding networks are applied to control horizontal and vertical radiation current flows for each sub-array, respectively. Equivalence of scattering parameters and radiation patterns between two antennas are validated by the available commercial simulator.

  • PDF