• 제목/요약/키워드: Plain fin

검색결과 66건 처리시간 0.024초

FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달 (Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72)

  • 임태우;유삼상;김환성
    • 수산해양교육연구
    • /
    • 제20권3호
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

Thermal Performance of a Finned-tube Heat Exchanger used in Condensing Gas Boiler

  • Kang, Hie-Chan;Lim, Bok-Bin;Lee, Jung-Man;Kim, Moo-Han
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.61-67
    • /
    • 2009
  • In the present study, an experiment was conducted to investigate the heat and mass transfer performance of heat exchangers used in the condensing gas boiler. Two types of spiral circular fin-tube heat exchangers and a plain tube were tested in the flue gas of propane and dry air. Heat and mass transfer coefficients were measured and compared with the previous correlations. The experimental data for the sensible heat transfer of the plain tube reasonably agreed with the previous correlations for dry air and flue gas. However, the mass transfer coefficient of the plain tube was greater than the previous correlations. The pH, $NO_x$, and $SO_x$ data of condensate were provided.

Comparison of Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions

  • Kim Nae-Hyun;Sin Tae-Ryong;Lee Eung-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.128-137
    • /
    • 2005
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately $30\%$ lower than the dry surface values. For the pressure drop, the wet surface yielded approximately $30\%$ higher values compared with the dry surface counterpart. Data were compared with existing correlations.

평판휜 열 교환기의 건표면, 습표면 열전달 및 압력손실에 관한 연구 (Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions)

  • 민창근;조진표;오왕규;김내현
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.218-229
    • /
    • 2004
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately 30% lower than the dry surface values. For the pressure drop, the wet surface yielded approximately 30% higher values compared with the dry surface counterpart. Data were compared with existing correlations.

사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 성능 (Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes)

  • 최병남;풍익;심현민;김내현
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.279-288
    • /
    • 2013
  • Heat transfer and pressure drop characteristics of fin-and-tube heat exchangers having sine wave fins and oval tubes were investigated. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7 mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. The effect of fin pitch on the j and f factors was negligible. The effect of the tube row on the j factor, however, was different from that of common fin-and-tube heat exchangers having plain fins and round tubes. The highest j factor was obtained for a two-row configuration, while the lowest one was obtained for a one-row configuration. A possible reason was attributed to the flow mixing characteristics of the sine wave channel of the present geometry. Comparison with a plain fin-and-tube heat exchanger having 15.88 mm O. D. round tube reveals that the present oval fin-and-tube heat exchanger shows generally superior thermal performance, except for the one-row configuration.

응축용 특수 전열관의 열전달 특성에 관한 연구 (Experimental Study on Condensation Heat Transfer Characteristics of Special Heat Transfer Tubes)

  • 한규일;박종운;권영철;조동현
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.827-835
    • /
    • 2001
  • In this study, condensation heat transfer characteristics were conducted with special heat transfer tubes of SH-C type. Experiments were carried out the saturated vapor temperature of 334K and the wall subcooling of 1.5-4.5K. The refrigerant was R-113 and the enhanced tubes used in the present study were SH-CDR, SH-CYR and SH-CHR. The experimental results showed that the condensation heat transfer coefficients of SH-C type tubes were about 23-66% higher than those of a low integral-fin tube. It was visualized that the condensed liquid on the outer surface of SH-C type tubes flowed continuously down unlike a low integral-fin tube and a plain tube, due to a 3-D extending fin on the outer surface of SH-C type tubes. As a result, the thermal resistance of the condensed liquid decreased and the heat transfer coefficient increased. Also, the enhancement ratio of SH-CDR tube was the highest, and it was about 9-11 times as compared to that of a plain tube.

  • PDF

낮은 핀 표면과 Turbo-B 촉진 표면에서 임계 열유속까지의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficients Up to Critical Heat flux on Low-fin and Turbo-B Surfaces)

  • 이요한;정동수
    • 설비공학논문집
    • /
    • 제23권3호
    • /
    • pp.179-187
    • /
    • 2011
  • In this work, nucleate pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal low fin and Turbo-B square surfaces of 9.53 mm length. Tested refrigerants are R32, R22, R134a, R152a and R245fa and HTCs are taken from 10 $kW/m^2$ to critical heat fluxes for all refrigerant at $7^{\circ}C$. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool. Test results show that Critical heat fluxes(CHFs) of all enhanced surfaces are greatly improved as compared to that of a plain surface in all tested refrigerants. CHFs of all refrigerants on the 26 fpi low fin surface are increased up to 240% as compared to that of the plain surface. HTCs on both low fin and Turbo-B surfaces increase with heat flux. After certain heat flux, however, they decrease. CHFs of the Turbo-B enhanced surface are lower than that of the 26 fpi low fin surface. This phenomenon is due to the difference in surface structure of the low fin and Turbo-B surface.

터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 - (A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer-)

  • 조동현;한규일;김시영
    • 수산해양교육연구
    • /
    • 제5권1호
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여- (A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop-)

  • 한규일;김시영;조동현
    • 수산해양교육연구
    • /
    • 제6권1호
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

CFD 해석을 통한 Plain형 핀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 연구 (A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis)

  • 유소;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.615-624
    • /
    • 2014
  • 핀-튜브 열교환기는 산업용 보일러, 라디에이터, 냉동기 등에 많이 사용되고 있어 열교환기의 성능향상을 위한 다양한 연구가 진행되고 있다. 본 연구에서는 Plain형 핀-튜브 열교환기에 대해 가로피치, 와류발생기위치, 튜브표면의 돌기형상 및 돌기개수 등의 변화에 따른 열전달 및 압력강하 특성을 이론적으로 해석하였다. CFD 해석시 경계조건으로는 SST 난류모델을 적용하였으며, 튜브표면의 온도는 333 K이고, 입구측 공기의 온도와 속도는 423~438 K, 1.5~2.1 m/s로 가정하였다. 해석결과로는 열전달계수는 가로피치에 대한 영향은 큰 차이가 없으며, 열전달특성은 와류발생기 설치가 튜브 전방부에 위치할수록 양호한 것으로 나타났다. 또한 튜브표면의 돌기형상은 열전달 및 압력강하 특성에서 원형이 톱니형과 삼각형보다 적절하였으며, 16개 원형 돌기형상이 가장 양호하였다.