• 제목/요약/키워드: Plain carbon steels

검색결과 12건 처리시간 0.021초

변형 온도에 따른 탄소강의 미세조직 및 경도 변화 (Effect of Deformation Temperature on Microstructure and Hardness of Plain Carbon Steels)

  • 이태경;박성혁;이덕락;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 2009
  • Microstructural evolution and the mechanical properties of various carbon steels were investigated with the variation deformation temperature to explore the optimum microstructure with excellent combination of strength and ductility. For this purpose, three carbon steels containing different carbon contents were deformed using Gleeble 3500 at temperatures including austenitic, austenitic/ferritic, austenitic/cementitic, ferritic/cementitic regions. The results showed that in the medium and high carbon steels, cementite particles became finer with decreasing deformation temperature resulting higher hardness but lower ductility. Further effort is needed to find out optimum microstructures with enhanced mechanical properties.

  • PDF

Constitutive Relation of Alloy Steels at High Temperatures

  • Lee, Young-Seog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.55-59
    • /
    • 2005
  • This paper presents a feasibility study whether Shida's constitutive equation being widely used for plain carbon steel in steel manufacturing industry can be extended to alloy steels with a due carbon equivalent model. T,he constitutive relation of the alloy steels (SAE9254, AISI52100 and AISI4140) is measured using hot deformation simulator (GLEEBLE 3500C) at high temperatures ($800^{\circ}C{\~}1000^{\circ}C$) within strain rates of $0.05{\~}40\;s^{-1}$. It has been found the predicted flow stress behavior (constitutive relation) of AISI52100 steel is in agreement with the measured one. On the other hand, the measured flow stress behavior of SAE9254 and AISI4140 steel partly concords with the predicted one when material experiences relatively high strain rate ($10{\~}40\;s^{-1}$) deformation at low temperature ($800^{\circ}C$). It can be deduced that, for AISI52100 steel, Shida's equation with the carbon equivalent model can be applicable directly to the roughing and intermediate finishing stand in hot rolling process for calculating the roll force and torque.

Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels

  • Muhammad Ishtiaq;Aqil Inam;Saurabh Tiwari;Jae Bok Seol
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.10.1-10.15
    • /
    • 2022
  • The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).

고인성 비조질강 샤시부품 개발 (Development of Chassis Parts Using High Toughness Micro-alloyed Steel)

  • 이시엽;김혁
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

Mechanical Behaviour of Non-Oxide Boride Type Ceramics Formed on The AISI 1040 Plain Carbon Steel

  • Sen, Saduman;Usta, Metin;Bindal, Cuma;UciSik, A.Hikmet
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.27-31
    • /
    • 2000
  • A series experiments were performed to evaluate mechanical behavior of non-oxide boride type ceramics formed on the AISI 1040 plain carbon steel. Boronizing was performed in a slurry salt bath consisting of borax, boric acid, and ferro-silicon at $950^{\circ}C$ for 2-6h. The AISI 1040 steel used as substrate material was containing 0.4%C, 0.13%Si, 0.65%Mn, 0.02%P, 0.014%S. The presence of non-oxide boride type ceramics $Fe_2B $ and FeB formed on the surface of steel was confirmed by metallographic technique and X-ray diffraction (XRD) analysis. The hardness of borides measured via Vickers indenter with a load of 2N reached a microhardness of up to 1800 DPN. The hardness of unborided steel was 185 DPN. The fracture toughness of borides measured by means of Vickers indenter with a load of 10N was about 2.30 MPa.$m^{1/2}$. The thickness of boride layers ranged from 72$\mu\textrm{m}$ to 145$\mu\textrm{m}$. Boride layers have a columnar morphology.

  • PDF

탄소강의 열간연성 거동에 미치는 산화의 영향 (Effect of Oxidation on Hot Ductility Behavior of Plain Carbon Steel)

  • 박태은;이운해;손광석;이성근;김인수;임창희;김동규
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.394-400
    • /
    • 2010
  • The effects of oxidation behavior on the hot ductility of plain carbon steels were investigated at various temperatures in order to simulate the continuous casting process more precisely, in which the process undergoes in air atmosphere rather than Ar atmosphere. The high temperature oxidation behavior and scale morphology of the carbon steels exposed to the air and Ar atmosphere at various temperatures were also investigated in order to assess the mechanism of the RA value decreasing in an air atmosphere. The RA values obtained from the air atmosphere were marked below 45% by the test temperature, except for over 1000${^{\circ}C}$, with the RA values remaining in low values in both the low and high temperature region, at which the RA values generally recovered in the Ar atmosphere. The surface roughness of the specimen was developed by external and internal oxidation when the specimen was deformed in an air atmosphere at high temperature, with the result being the stress concentrated at the roughness of the specimen surface, resulting in low RA values. The hot ductility in the air atmosphere was found to be likely controlled by the oxidation rate instead of the microstructures corresponding to test temperatures.

Ar-CO$_2$ Plasma에 의한 강(鋼)의 정련(精鍊) (Refining of Steels by $Ar-CO_2$ Plasma)

  • 장석영;김동의
    • 한국주조공학회지
    • /
    • 제6권4호
    • /
    • pp.284-289
    • /
    • 1986
  • Decarburization phenomena have been studied by plasma in stainless steel, plain carbon steel and cast iron. It was also investigated the movement of impurity element P,S in the plasma jet metal pool. The plasma jet was obtained by $Ar\;-\;CO_2$ gas mixture with 5 kVA DC power source. It produced enough temperature to dissociate into activated oxygen atom by reaction of $CO_2{\leftrightarrows}CO+O^+$ and it reacted with ${\underline{C}}$ in metal pool. Decarburization rate was increased about 5 times in comparing with the conventional induction melted metal pool by $CO_2$ gas decarburization. Even under the Ar plasma jet, decarburization was obtained by agitation of metal bath by $Ar^+$ bombardment and dilution phenomena of carbon atom under the very high plasma temperature. But heavy element P and S are not much removed because they are too heavy in mass to be activated by $Ar^+$ion bombardment. Desulphurization was achieved by $Ar\;-\;CO_2$ plasma in plain carbon steel and cast iron by the reaction of $SO_2({\underline{S}}+O^+)$. But dephosphorization could not be obtained by $Ar\;-\;CO_2$ plasma, because gaseous reaction of phosphorous oxide (${\underline{P}}+O^+$) was not existed.

  • PDF

탄소강의 열간 연성에 미치는 저주기 피로 시기와 냉각속도의 영향 (Effects of Onset Time of Fatigue and Cooling Rate on Hot Ductility of Plain Carbon Steel)

  • 박태은;이운해;손광석;이성근;김인수;임창희;김동규
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.210-217
    • /
    • 2010
  • The effects of cooling rate and onset time of fatigue test on hot ductility of plain carbon steels containing 0.06$\sim$0.8 wt.% carbon were investigated at various temperatures. The tensile tested specimen after fatigue strain during cooling showed higher hot ductility than the specimen fatigued and tensile-strained after cooling. With a decreasing cooling rate from solutionizing temperature to test temperature, hot ductility was increased in all temperature ranges, typically in the trough region, and the minimum point of ductility moved to a lower temperature. Also, the depth and width of the trough decreased with lowering the cooling rate.

중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구 (A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels)

  • 박기원;오도원;조효석;이해우;이준범;이상윤
    • 열처리공학회지
    • /
    • 제12권2호
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

작은 表面缺陷에서 發생.成長하는 表面疲勞균열의 成長特性에 관한 硏究 (Crack growth behavior of fatigue surface crack initiated from a small surface defect)

  • 서창민;권오헌;이정주
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.191-197
    • /
    • 1987
  • 본 논문에서는 이상과 같이 그 중요성이 인정되는 작은 표면피로균열의 성장 특성을 조사하기 위하여 연강과 중탄소강에 두 종류의 작은 표면결함을 가공한 네가지 종류의 시험편을 제작하고, 응력비 R=-1인 소야식 회전굽힘 피로시험을 통하여 작은 표면결함이 피로강도에 미치는 영향과 그 성장특성을 조사한 후 응력확대계수 K를 사 용하는 방법과 반복전스트레인 확대계수범위 .DELTA. $K_{\epsilon}$t/를 비교 검토하여 그 유효성 을 조사하고 이를 파괴역학적 측면에서 고찰하였다.다.