• Title/Summary/Keyword: Placenta transfer

Search Result 34, Processing Time 0.018 seconds

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

Time of Initial Detection of the Gestational Structures by Ultrasonography Examination in Small Pet Dogs (소형 애완견에서 초음파 검사에 의한 임신 구조물의 최초 관찰 시기)

  • Park, Sang-Guk;Kim, Bang-Sil;Yun, Chang-Jin;Yeo, Woon-Chang;Park, Chul-Ho;Kim, Jae-Pung;Lee, Suk-Kyung;Moon, Jin-San;Suh, Guk-Hyun;Oh, Ki-Seok;Son, Chang-ho
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Serial ultrasonographic examinations were daily performed from 15 days after ovulation until parturition to determine the time of first detection and ultrasonographic appearance of the fetal and extra-fetal structures in pregnant 10 Maltese, 10 Yorkshire Terrier, 15 Shih-tzu, and 10 Miniature Schnauzer bitches, respectively. Gestational age was timed from the day of ovulation (day 0), which was estimated to occur when plasma progesterone concentration was first increased above 4.0ng/ml. The gestational length was $63.4{\sim}63.6$ (range: $61{\sim}65$) days and the geatational length was no statistically significant difference among bitches (p>0.05). The initial detection of the extra-fetal structures were; gestational sac at days $18.9{\sim}19.5\;(17{\sim}22)$, zonary placenta at days $24.6{\sim}25.5\;(23{\sim}28)$, yolk sac membrane at days $24.6{\sim}25.5\;(23{\sim}27)$, yolk sac tubular shape at days $26.1{\sim}26.3\;(24{\sim}28)$, and amniotic membrane at days $26.1{\sim}28.2\;(24{\sim}31)$, respectively. The time of the first detection of the extra-fetal structures were no statistically significant difference among bitches (p>0.05). The initial detection of the fetal structures were; embryo initial detection at days $22.5{\sim}22.9\;(21{\sim}24)$, heartbeat at days $23.2{\sim}23.8\;(21{\sim}25)$, embryo bipolar shape $27.6{\sim}28.9\;(26{\sim}30)$, fetal movement at days $31.9{\sim}32.8\;(27{\sim}34)$, limb buds at days $29.1{\sim}30.7\;(27{\sim}33)$, stomach at days $31.1{\sim}33.1\;(29{\sim}34)$, urinary bladder at days $32.4{\sim}33.2\;(29{\sim}35)$, skeleton at days $34.7{\sim}35.9\;(34{\sim}39)$, and kidney at days $42.1{\sim}44.7\;(41{\sim}48)$, respectively. The the time of the first detection of the fetal structures were no statistically significant difference among bitches (p>0.05). These results indicate the evaluation of the time of first detection and ultrasonographic characteristics of the gestational structures might be useful for pregnancy diagnosis, estimating fetal age, embryonic resorption, fetal monster, abnormal fetal growth and fetal viability, respectively.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Distribution of PFOA and PFOS in Maternal Blood, Cord Blood and Breast Milk in Busan (부산 지역 임산부의 모체혈, 제대혈, 모유에서 PFOA, PFOS의 농도)

  • Suh, Chun-Hui;Lee, Chae-Kwan;Kim, Kun-Hyung;Son, Byung-Chul;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.8-17
    • /
    • 2012
  • Objectives: Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are man-made, persistent global pollutants widely diffused throughout the environment. They have been even found in the cord blood and breast milk of humans. Furthermore evidence of developmental toxicity in animals exists. To assess the distribution of maternal and fetal exposure to PFOS and PFOA, we analyzed paired maternal blood, cord blood and breast milk samples. Methods: Maternal blood, cord blood and breast milk were collected from 150 volunteers from the general population (aged 20-40, mean $30.5{\pm}2.9$) of the city of Busan in 2009-2010. The samples were extracted using the weak anion exchange and solid-phase extraction methods and quantified by high-performance liquid chromatograph (HPLC, Agilent 1200 Series) coupled with an Triple Quad LC-MS/MS system (Agilent 6410). Results: Median PFOA and PFOS concentrations in maternal blood were 2.18 and 3.32 ng/ml, in cord blood were 0.83 and 0.58 ng/ml, and in breast milk were 0.13 and 0.11 ng/ml, respectively. PFOS and PFOA concentrations were significantly correlated among matrices (Spearson's ${\rho}=0.226$, p = 0.05 for maternal blood; ${\rho}=0.736$, p < 0.01 for cord blood; ${\rho}=0.493$ p < 0.01 for breast milk). The ratio of cord blood/maternal blood was 0.39 for PFOA and 0.19 for PFOS. The ratio of breast milk/maternal blood was 0.07 for PFOA and 0.06 for PFOS. Conclusions: Our findings suggest that PFOA and PFOS exposure through the placenta was more prominent than through breast milk among Korean neonates born in Busan. The transfer efficiency of maternal blood to breast milk was similar between PFOA and PFOS, but that of maternal blood to cord blood was higher in PFOA than PFOS.