• Title/Summary/Keyword: Pituitary tumor-transforming gene

Search Result 4, Processing Time 0.023 seconds

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

Expression of Pituitary Tumor Transforming Gene 1 is an Independent Factor of Poor Prognosis in Localized or Locally Advanced Prostate Cancer Cases Receiving Hormone Therapy

  • Cao, Xi-Liang;Gao, Jiang-Ping;Wang, Wei;Xu, Yong;Shi, Huai-Yin;Zhang, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3083-3088
    • /
    • 2012
  • We investigated the prognostic value of pituitary tumor transforming gene 1 (PTTG1) expression according to clinicopathological features among localized or locally advanced prostate cancer cases receiving hormone therapy. A retrospective study involved 64 patients receiving combined androgen blockade treatment was performed. PTTG1 expression was determined by immunohistochemical staining using initial needle biopsy specimens for diagnosis. Associations of PTTG1 with various clinicopathological features and disease-free survival were examined via uni- and multivariate analyses. No association between PTTG1 expression and clinical T stage, Gleason score, pretreatment PSA levels, risk groups was found (p =0.682, 0.184, 0.487, 0.571, respectively). Univariate analysis revealed that increased PTTG1 expression, T3 stage and high risk group were associated with increased risk of disease progression (p =0.000, 0.042, and 0.001), and high PSA level had a tendency to predict disease progression (p =0.056). Cox hazard ratio analysis showed that PTTG1 low expression (p =0.002), PTTG1 high expression (p =0.000) and high risk group (p =0.0147) were significantly related to decreased disease-free survival. In conclusion, PTTG1 expression determined by immunohistochemical staining in needle biopsy specimens for diagnosis is a negative prognostic factor for progression in localized or locally advanced prostate cancer receiving hormone therapy.

The Important Anti-Apoptotic Role and Its Regulation Mechanism of PTTG1 in UV-Induced Apoptosis

  • Lai, Yongqing;Xin, Dianqi;Bai, Junhai;Mao, Zebin;Na, Yanqun
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.966-972
    • /
    • 2007
  • Pituitary tumor transforming gene (PTTG1) is widely detected in many tumors. Increasing evidence reveals that PTTG1 is associated with cell proliferation, cellular transformation and apoptosis. However, the functions of PTTG1, especially its role in DNA damage-induced apoptosis, remain largely unclear. In this report, we used UV irradiation to induce apoptosis in HeLa cells to examine the role of PTTG1 in UV-induced apoptosis by RNAi-mediated knockdown and overexpression of PTTG1. RNAi-mediated knockdown of PTTG1 expression increased and overexpression of PTTG1 decreased the UV-induced apoptosis. Furthermore, UV irradiation decreased PTTG1 mRNA and protein expression. These effects were found to be mediated by JNK pathway. Therefore, PTTG1 had an important anti-apoptotic role in UV-induced apoptosis and this role was mediated by JNK pathway. These results may provide important information for understanding the exact role and the regulation mechanism of PTTG1 in UV-induced apoptosis.

Effects of PTTG Down-regulation on Proliferation and Metastasis of the SCL-1 Cutaneous Squamous Cell Carcinoma Cell Line

  • Xia, Yong-Hua;Li, Min;Fu, Dan-Dan;Xu, Su-Ling;Li, Zhan-Guo;Liu, Dong;Tian, Zhong-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6245-6248
    • /
    • 2013
  • Aims: To study effects of down-regulation of pituitary tumor-transforming gene (PTTG) on proliferation and metastasis ability of the SCL-1 cutaneous squamous cell carcinoma (CSCC) cell line and explore related mechanisms. Methods: SCL-1 cells were divided into 3 groups (untreated, siRNA control and PTTG siRNA). Cell proliferation assays were performed using a CCK-8 kit and proliferation and metastasis ability were analyzed using Boyden chambers. In addition, expression of MMP-2 and MMP-9 was detected by r-time qPCR and Western blotting. Results: Down-regulation of PTTG could markedly inhibit cell proliferation in SCL-1 cells, compared to untreated and control siRNA groups (P < 0.05). Real-time qPCR demonstrated that expression levels of PTTG, MMP-2 and MMP-9 in the PTTG siRNA group were 0.8%, 23.2% and 21.3% of untreated levels. Western blotting revealed that expression of PTTG, MMP-2 and MMP-9 proteins in the PTTG siRNA group was obviously down-regulated. The numbers of migrating cells ($51.38{\pm}4.71$) in the PTTG siRNA group was obviously lower than that in untreated group ($131.33{\pm}6.12$) and the control siRNA group ($127.72{\pm}5.20$) (P < 0.05), suggesting that decrease of proliferation and metastasis ability mediated by PTTG knock-down may be closely correlated with down-regulation of MMP-2 and MMP-9 expression. Conclusion: Inhibition of PTTG expression may be a new target for therapy of CSCC.