• 제목/요약/키워드: Pitting potential

검색결과 142건 처리시간 0.027초

자동차 배기계 플랜지용 16~19 wt.% 페라이트 주조용 스테인리스강 개발 (Development of a (16~19)Cr Ferritic Cast Stainless Steel for a Flange Material of Automotive Exhaust Parts)

  • 장희진;범원진;박찬진
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.79-85
    • /
    • 2009
  • We aimed to develop a Fe-($16{\sim}19$)Cr-($0.1{\sim}0.6$)Ti-($0.1{\sim}0.6$)Nb stainless steel for automotive exhaust parts with high corrosion resistance. The alloys with high Cr content showed high resistance to general corrosion and also localized corrosion. The increase of Ti and Nb contents resulted in a linear increase in the general corrosion resistance, while the pitting potential was improved by addition of these elements up to about 0.4 wt.%. The low-carbon Fe-17Cr-0.4Ti-0.4Nb alloy annealed at $850^{\circ}C$ and air-cooled was considered to be the optimum alloy for our purpose with the critical anodic current density of $247{\mu}A/cm^2$ in 0.05 M $H_2SO_4$ solution and the pitting potential of 310 mVSCE in 0.2 M NaCl solution.

질소 이온주입된 AiSi 316L 스테인리스강 소결체의 공식거동 (Pitting Corrosion Behavuor of N2+ ion Implanted AISI 316L Stainless Steel Compacts)

  • 최한철
    • 한국표면공학회지
    • /
    • 제31권2호
    • /
    • pp.73-80
    • /
    • 1998
  • The aim of this study is to develop sintered stainless steels (SSS) with good mechanical strength, wear resistance, and corrosion resistance by nitrogen ion implantation on the Culated SSS surface. Stainless steel compacts containg Cu (2-10 wt%) were prepared by electroless Cu-pating method which results in the increased3 homogenization in alloying powder. Nitrogen ion implantation was carried out by using N2 gas as the ion source. Nitrogen ions were embedded by an acceleratol of 130keV with doese $3.0\times10^{17}\;ions/\textrm{cm}^2$ on the SSS at $25^{\circ}C$ in$2\times10^{-6}$ torr vacuum. The nitrogen ion implanted SSS obtained from anodic ploarization curves revealed higher corrosion potential than that of nitrogen ion unimplante one. And nitrogen ion implanted 316LSSS had good resistance to pitting corrosion due to the synergistic effect of Mo and N, and the inhibition of $NH_4\;^+$<\TEX>, against $CI^-$<\TEX>.

  • PDF

염화물 환경에서 린 듀플렉스 스테인리스 주강의 미세조직과 연계한 공식 거동 (The Behavior of Pitting Corrosion Associated with Microstructure of a Cast Lean Duplex Stainless Steel in Chloride Environments)

  • 이인성;김순태;남채진;양승만;조인성;유승목
    • 한국주조공학회지
    • /
    • 제43권5호
    • /
    • pp.230-240
    • /
    • 2023
  • 염화물 환경에서 329LD 린 듀플렉스 스테인리스강과 CF3M 오스테나이트 스테인리스강 주물재의 공식 거동을 조사하였다. CF3M 합금에 비해 상대적으로 낮은 Ni 및 낮은 Mo 함량을 갖는 329LD 합금의 공식 전위, 부동태 영역 및 임계 공식 온도는 상용 CF3M 합금보다 높기 때문에 329LD 합금의 공식 저항성은 CF3M 합금보다 우수하였다. CF3M 합금에 비해 높은 Cr과 Mo 와 중간 정도의 N 함량을 갖는329LD 합금의 공식 저항성이 향상된 이유는 크게 두 가지이다. 첫째, 329LD 합금의 공식 저항 당량지수 (PREN δ+γ) 값이 CF3M 합금보다 높다. 둘째, 329LD 합금의 부동태 영역은 CF3M 합금의 부동태 영역보다 크다. 이는 329LD 합금에 높은 Cr과 낮은 Mo 및 중간 정도의 N 함량을 첨가함으로써 세 원소의 시너지 효과가 부동태 피막의 부동태를 향상시켜 내식성을 증가시키기 때문이다. 공식저항 당량지수에서 N factor 16을 이용하여 계산된 오스테나이트 (γ)의 PRENγ과 페라이트 (δ) 값의 PRENδ을 계산한 결과 오스테나이트 (γ)의 PRENγ 값이 페라이트 (δ)보다 작으므로 329LD 합금의 공식은 γ상에서 선택적으로 시작되어 최종적으로는 γ상에서 δ상으로 전파됨을 확인하였다.

은의 부식 및 변식에 미치는 전해질 용액에 따른 ICCP 전압의 영향 (Effect of ICCP Potential with Electrolyte on Corrosion and Discolor of Silver)

  • 신병현;김도형;정원섭
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.207-212
    • /
    • 2020
  • Silver is an inexpensive precious metal and is used in various jewelry in Asia. Although silver has high potential, it has corrosion resistance that is vulnerable to boiling sulfuric acid and nitric acid. So, silver research is needed to prevent the corrosion with environment. But silver corrosion is not studied. sulfuric acid make the uniform corrosion and chloride ion make the pitting corrosion. ICCP inhibits the corrosion because it offset electrons. This study used a potential from - 4 V to 4 V to check the effect of potential. Corrosion rate is lowet at -1 V.

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

ER2594 용착금속의 전기화학적 부식특성에 미치는 시그마상의 영향 (Effect of Sigma Phase on Electrochemical Corrosion Characteristics of a Deposited Metal of ER2594)

  • 정병호;김시영;서기정;박주영
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.75-81
    • /
    • 2015
  • A deposited metal specimen of ER2594 which is a super duplex steel welding wire used to investigate the effect of sigma(${\sigma}$) phase on electrochemical corrosion characteristics was prepared by gas tungsten arc welding. Aging treatment was conducted for the specimen at the temperature range of $700^{\circ}C$ to $900^{\circ}C$ for 5 to 300 minutes after annealing at $1050^{\circ}C$. Corrosion current density has decreased a little with an increase of aging time over 60 minutes at $700^{\circ}C$ to $900^{\circ}C$ and the uniform corrosion of deposited metal had more influence on the precipitation of ferrite than the precipitation of sigma phase. Therefore, the precipitation of sigma phase did not have much effect on the uniform corrosion. Pitting potential representing pitting corrosion has shown decreasing tendency as the precipitation of sigma phase increased. The degree of sensitization representing intergranular corrosion has shown increasing tendency as the precipitation of sigma phase increased at $700^{\circ}C$ to $800^{\circ}C$, while it has decreased at $900^{\circ}C$ for 60 to 300 minutes.

원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향 (Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant)

  • 신민철;김영식;김경수;장현영;박흥배;성기호
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

해수 내 다양한 알루미늄 선박용 재료의 캐비테이션 진폭에 따른 캐비테이션-침식 손상 연구 (Investigation on Cavitation-Erosion Damage with the Cavitation Amplitude of Al Alloy Materials in Seawater)

  • 양예진;김성종
    • Corrosion Science and Technology
    • /
    • 제19권5호
    • /
    • pp.250-258
    • /
    • 2020
  • Recently, 5000 series and 6000 series Al alloys have been used as hull materials for small and medium-sized ships because of their excellent weldability, corrosion resistance, and durability in marine environments. Al ships can navigate at high speed due to their light weight. However, cavitation-erosion problems cause reducing durability of Al ship at high speed. In this investigation, 5052-O, 5083-H321, and 6061-T6 Al alloy materials were used to evaluate the damage characteristics with amplitude (cavitation strength). As a result of the electrochemical experiments, the corrosion current density and corrosion potential of 6061-T6 in seawater were 8.52 × 10-7 A/㎠ and -0.771 V, respectively, presenting the best corrosion resistance. The cavitation-erosion experiment showed that 5052-O had the lowest hardness value and cavitation-erosion resistance. 5052-O also had a very short incubation period. As the experiment progressed for 5052-O, pitting formed and grew in a short time, and was observed as severe cavitation-erosion damage that eliminated in large quantities. Among the three specimens, 5083-H321 presented the highest hardness value and the damage rate was the smallest after the initiation of pitting.

AISI 304 스테인리스강에 코팅된 Ti/TiN film의 공식거동 (Pitting Behavior of Ti/TiN Film Coated onto AISI 304 Stainless Steel)

  • 박지윤;최한철;김관휴
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.93-100
    • /
    • 2000
  • Effects of Ti content and Ti underlayer on the pitting behavior of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1~1.0wt% Ti were melted with a vacuum melting furnace and heat treated at $1050^{\circ}C$ for 1hr for solutionization. The specimen were coated with l$\mu\textrm{m}$ and 2$\mu\textrm{m}$ thickness of Ti and TiN by E-beam PVD method. The microstructure and phase analysis were conducted by using XRD, XPS and SEM with these specimen. XRD patterns shows that in TiN single-layer only the TiN (111) Peak is major and the other peaks are very weak, but in Ti/TiN double-layer TiN (220) and TiN (200) peaks are developed. It is observed that the surface of coating is covered with titanium oxide (TiO$_2$) and titanium oxynitride ($TiO_2$N) as well as TiN. Corrosion potential on the anodic polarization curve measured in HCl solution increase in proportion to the Ti content of substrate and by a presence of the Ti underlayer, whereas corrosion and passivation current densities are not affected by either of them. The number and size of pits decrease with increasing Ti content and a presence of the coated Ti film as underlayer in the TiN coated stainless steel.

  • PDF

오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF