• 제목/요약/키워드: Pitching Moment

검색결과 101건 처리시간 0.028초

전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델 (Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator)

  • 진재현
    • 한국항공우주학회지
    • /
    • 제50권2호
    • /
    • pp.111-118
    • /
    • 2022
  • 전기-기계식 구동기(EMA)는 전기 모터와 기계적 동력전달 요소를 결합한 것으로 설계 자유도와 유지보수 측면에서 도심 항공 모빌리티(UAM)에 적합하다. 본 논문에서는 UAM의 로터 블레이드 피치각을 조종하는 EMA에 대한 연구 결과를 제시한다. 구동기는 역구동형 롤러 스크류를 기반하며, 2절 링크를 통하여 블레이드 피치각을 조종한다. 구동기만의 동역학과 이것을 포함한 블레이드 피치운동의 동역학 방정식을 유도하였다. 블레이드 피치 동역학 방정식의 경우 링크의 영향으로 등가 관성모멘트는 링크 각도에 따라 변한다. 넛트 운동의 관점과 블레이드 피치 운동의 관점에서 등가 관성모멘트의 변동을 분석·비교하는 과정을 제시하였다. 사례로 선정한 모델의 경우에 전자의 등가 관성모멘트 변동이 후자에 비하여 작았으며, 그래서 넛트 운동의 관점에서 유도한 모델이 제어기 설계에 적합하다고 판단한다.

클럽별 골프 스윙 시 지면 반력 변화에 관한 연구 (A Study of Ground Reaction Forces During Professional Golfer's Swing with Different Golf Clubs)

  • 허유진;문건필;임정
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.103-111
    • /
    • 2005
  • The purpose of this study was to analysis golf swing in accordance with each club using ground reaction force data. The subject of this study was current professional golf players in Korea. Golf clubs used for this study were driver, iron4, iron7, and pitching. The ground reaction force for left and right foot was collected by one Kistler and one Bertec force platforms. Also collected visual data by NC high speed camera to check the phase which was composed of address, top of backswing, impact and finish. Sampling rate was 600Hz both ground reaction forces data and visual data. The conclusion are as follows. 1. An aspect of change for ground reaction force was that the weight between the left foot and right foot were contrary to each other in general as the phase. 2. Without regard to the type of golf club, the ratio of necessary ground reaction forces for each phase in accordance with address, top of backswing, impact, and finish was comparatively identical. 3. According to the type of golf club, the tendency of Fy was not varied. In terms of Driver, at the moment of impact, the weight of foot-both right and left-was moved to the movement direction of golf because of the rotation force from swing.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

국내 P공항의 부지 제한조건을 고려한 로컬라이저의 최적위치 선정에 관한 연구 (A Study on Determination for Location of Localizer Antenna under Area Restrictive Conditions at Domestic P-Airport)

  • 조환기;김종범;송병흠
    • 한국항공운항학회지
    • /
    • 제23권2호
    • /
    • pp.7-14
    • /
    • 2015
  • This paper deals with an optimal determination process for the built-in location of localizer under restrictive siting area conditions of a domestic P-airport. Aerodynamic forces and moments acting on the localizer structure can be used a reference to find the safe distance from jet blast and the position at which the reasonable structural loading is applied. Wind tunnel experiment is conducted to measure aerodynamic loadings. The finite element analysis for structural deformation is employed to get the information of structural failure. A new localizer's position is determined by considering aerodynamic loading, structural strength and thermal loading due to jet blast. Deflector effect was also investigated in this study. In conclusion, the location of localizer can be placed at shorter than the current position and greatly decreased if the deflector is applied at the front of localizer.

램프를 이용한 측 추력기 성능향상에 관한 연구 (A Study for Performance Enhancement of Side Jet using a Ramp)

  • 변영환;배기준;;이재우
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.73-79
    • /
    • 2004
  • 초음속 유동하에서 측 추력기의 후방에 램프를 설치하였을 경우의 유통 현상을 실험 및 수치해석을 이용하여 해석하였다. 실험적인 방법으로, 가시화방법으로는 쉴리렌, 압력 측정을 위한 방법으로 압력 탭 (Pressure Tap), Pressure Sensitive Paint를 이용하였으며, 수치해석을 위하여 AeroSoft사의 GASP ver. 4.0을 사용하였다. 실험조건은 자유류의 흐름이 마하수 4 측 추력기와 자유류의 압력비가 532 이었으며 GASP을 사용하여 3D 램프형상에 대한 고찰을 하였다. 위의 모든 결과들은 후방의 램프가 없을 경우와 비교를 통하여 램프를 장착하였을 경우 수직력의 감소없이 피칭다운 모멘트가 70% 정도 감소함을 확인하였다.

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

이동경계문제의 전산유체역학을 위한 체적격자변형코드 (A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems)

  • 고진환;김지웅;변도영;박수형
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1049-1055
    • /
    • 2008
  • 최근 다분야 전산유체 역학에서는 설계 최적화, 공탄성, 강제 경계 운동 등에서 요구되어지는 이동경계문제를 다루게 된다. 이동경계의 변위가 클 경우 강건하고 효율적인 격자 변형 알고리즘의 개발이 필요하다. 본 연구에서는 유한 대형요소와 초월유한보간에 근거한 체적격자 변형 코드를 개발하였고, 정렬격자 다중 블록 Navier-Stokes 코드와 연계하였다. 개발된 코드의 검증을 위해 주기적으로 진동 운동을 하는 에어포일 문제에 대해 계산을 수행 하였고 양력, 항력, 모멘트 계수의 이력 계산 결과가 실험 결과와 잘 일치하였다.

비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구 (A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test)

  • 김종섭;황병문;김성준
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.

글라이딩하는 날치의 날개형상 및 성능에 관한 연구 (Investigation of the Wing Design and Performance of a Gliding Flying Fish)

  • 박형민;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF