• Title/Summary/Keyword: Pitch ratio

Search Result 527, Processing Time 0.022 seconds

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.

A study on the robust speaker recognition algorithm in noise surroundings (주변 잡음 환경에 강한 화자인식 알고리즘 연구)

  • Jung Jong-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.47-54
    • /
    • 2005
  • In the most of speaker recognition system, speaker's characteristics is extracted from acoustic parameter by speech analysis and we make speaker's reference pattern. Parameters used in speaker recognition system are desirable expressing speaker's characteristics fully and being a few difference whenever it is spoken. Therefore we su99est following to solve this problem. This paper is proposed to use strong spectrum characteristic in non-noise circumstance and prosodic information in noise circumstance. In a stage of making code book, we make the number of data we need to combine spectrum characteristic and Prosodic information. We decide acceptance or rejection comparing test pattern and each model distance. As a result, we obtained more improved recognition rate than we use spectrum and prosodic information especially we obtained stational recognition rate in noise circumstance.

  • PDF

Acoustic Characteristics on the Adolescent Period Aged from 16 to 18 Years (16~18세 청소년기 음성의 음향음성학적 특성)

  • Ko, Hye-Ju;Kang, Min-Jae;Kwon, Hyuk-Jae;Choi, Yaelin;Lee, Mi-Geum;Choi, Hong-Shik
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.81-90
    • /
    • 2013
  • During adolescence the mutational period is characterized by the changes in the laryngeal structure, the length of the vocal cords, and a tone of voice. Usually, adolescents at 15 or 16 reach the voice of adults but the mutational period is sometimes delayed. Therefore, studies on the voice of adolescents between 16 ~ 18 right after the mutational period are required. Accordingly, this paper attempted to provide basic data about the normal standard for patients with voice disorders during this period by evaluating the vocal characteristics of males and females between 16 ~ 18 with an objective device bycomparing and analyzing them by sex and age. The study was conducted on a total of 60 subjects composed of each 10 subjects of each age. The vocal analysis was conducted by MPT (Maximum Phonation Time) measurement, sustained vowels and sentence reading. As for /a/ sustained vowels, fundamental frequency, hereinafter referred to as $F_0$, jitter, shimmer, noise-to-harmonic ratio, hereinafter referred to as NHR were measured by using the Multi-dimensional voice program (MDVP) among the Multi-Speech program of Computerized Speech Lab (Kay Elemetrics). The sentence reading, mean $F_0$, maximum $F_0$ and minimum $F_0$ were measured using the Real-Time Pitch (RTP) Model 5121 among the Multi-Speech program of Computerized Speech Lab (Kay Elemetrics). As a result, according to sex, there were statistically significant differences in $F_0$, jitter, shimmer, mean $F_0$, maximum $F_0$, and minimum $F_0$; and according to age, there were statistically significant differences in MPT. In conclusion, the voice of the adolescents between 16 ~ 18 reached the maturity levels of adults but the voice quality which can be considered on the scale of voice disorders showed transition to the voice of an adult during the mutational period.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fins Under Wet Conditions (광폭 루버 핀이 장착된 핀-관 열교환기의 습표면 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.719-726
    • /
    • 2015
  • One method of increasing the heat-transfer rate is to increase the heat-transfer area. In this study, we test a wide louver fin-and-tube heat exchanger with $P_t/P_l$ = 1.03, and we compare the results with those of a louver fin-andtube heat exchanger with $P_t/P_l$ = 0.6. The results obtained show that the heat-transfer capacities of the wide louver samples are larger (16% in one row, 29% in two rows, and 38% in three row samples) than those of the louver samples. Considering the area ratio of 2.17, the increase in the heat-transfer capacity is somewhat small. The reason for this may be due to the smaller heat-transfer coefficient and fin efficiency of the wide louver sample. The effect of the fin pitch on the j and f factors are not profounded. The j and f factors decreased as the number of tube rows increased. We compare the data obtained with existing correlations.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Fabrication of the Micromachined Transformer using High Permeability NiFe Core (투자율이 높은 NiFe 코어를 이용한 마이크로 트랜스포머 제작)

  • Cho, Se-Jun;Cha, Doo-Yeol;Lee, Jai-Hyuk;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2010
  • Recently as the electronic devices are getting to be more and more smaller, transformers are needed to be micro fabricated using MEMS technology. In this paper transformers have been fabricated and measured by depositing insulation layer to reduce the loss of eddy current and in the middle core a high permeability permalloy was designed based on the turns ratio between primary coil and secondary coil which are 1:1 transformers. (the number of turns of primary coil and secondary coil: 3/3, 5/5, 7/7). The size of the transformers including ground shield are $1mm{\times}1.5mm$, $1mm{\times}1.95mm$, $1mm{\times}2.35mm$ respectively. The line width, pitch and the height of post are 50um. Based on the measured data from the micro fabricated transformers, the 3/3 turns in the primary coil and secondary coil showed the lowest insertion loss with 1.5 dB at 480 MHz and the 7/7 turns in the primary coil and secondary coil showed the highest insertion loss with 2.5 dB at 280 MHz. Also confirmed that the bandwidth goes up as the number of turns goes down. There was some difference between the actual measured data and the HFSS simulation result. It looks as if it is an error of the difference between oxidation of copper or the permeability of SU-8.