• Title/Summary/Keyword: Pitch ratio

Search Result 527, Processing Time 0.026 seconds

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

Shoulder Arthrokinematics of Collegiate Ice Hockey Athletes Based on the 3D-2D Model Registration Technique

  • Jeong, Hee Seong;Song, Junbom;Lee, Inje;Kim, Doosup;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Objective: There is a lack of studies using the 3D-2D image registration techniques on the mechanism of a shoulder injury for ice hockey players. This study aimed to analyze in vivo 3D glenohumeral joint arthrokinematics in collegiate ice hockey athletes and compare shoulder scaption with or without a hockey stick using the 3D-2D image registration technique. Method: We recruited 12 male elite ice hockey players (age, 19.88 ± 0.65 years). For arthrokinematic analysis of the common shoulder abduction movements of the injury pathogenesis of ice hockey players, participants abducted their dominant arm along the scapular plane and then grabbed a stick using the same motion under C-arm fluoroscopy with 16 frames per second. Computed tomography (CT) scans of the shoulder complex were obtained with a 0.6-mm slice pitch. Data from the humerus translation distances, scapula upward rotation, anterior-posterior tilt, internal to external rotation angles, and scapulohumeral rhythm (SHR) ratio on glenohumeral (GH) joint kinematics were outputted using a MATLAB customized code. Results: The humeral translation in the stick hand compared to the bare hand moved more anterior and more superior until the abduction angle reached 40°. When the GH joint in the stick hand was at the maximal abduction of the scapula, the scapula was externally rotated 2~5° relative to 0°. The SHR ratio relative to the abduction along the scapular plane at 40° indicated a statistically significant difference between the two groups (p < 0.05). Conclusion: With arm loading with the stick, the humeral and scapular kinematics showed a significant correlation in the initial section of the SHR. Although these correlations might be difficult in clinical settings, ice hockey athletes can lead to the movement difference of the scapulohumeral joints with inherent instability.

A Study on the Possibility of Bulk Graphite Manufacturing using Coal Tar as a Binder and an Impregnant (콜타르를 결합재 및 함침재로 이용한 벌크 흑연 제조)

  • Lee, Sang-Min;Lee, Sang-Hye;Kang, Dong-Su;Roh, Jae-Seung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • This paper studied the possibility of manufacturing bulk graphite using coal tar, a precursor of coal tar pitch, as a binder and impregnant. Carbonization was conducted after mixing and molding with natural graphite as a filler and coal tar as a binder. Impregnation-recarbonization was performed five times after carbonization. Coal tar used as impregnant. Measuring density, porosity, compressive strength, and anisotropy ratio was conducted. The maximum density of bulk graphite specimen was 1.76 g/㎤ and the minimum porosity was 15.6% which could be controlled by process control. The highest compressive strength was 20.3 MPa. Then the maximum anisotropic ratio of bulk was shown 0.34 through XRD analysis. Therefore, it was confirmed that it was possible to manufacture artificial graphite in a bulk form by using coal tar as a binder and an impregnant.

Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes

  • Kim, Kyung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.

The Evaluation of the Radiation Dose and Image Quality Through the Change of the Tube Voltage in Cerebral CT Angiography (전산화단층촬영장치를 이용한 뇌 혈관조영 검사에서 관전압 변화에 따른 방사선량과 영상의 질 평가)

  • LEE, Ji-Won;Jung, Kang-Kyo;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • To image diagnosis in neurovascular diseases using Multi-Detector Computed Tomography(MDCT), injected the same contrast material when inspecting Brain Computed Tomography Angiography(BCTA) to examine radiation dose and Image quality on changing Cerebral Artery CT number by tube voltage. Executed an examination with same condition[Beam Collimation $128{\times}0.6mm$, Pitch 0.6, Rotation Time 0.5s, Slice Thickness 5.0mm, Increment 5.0mm, Delay Time 3.0sec, Care Dose 4D(Demension ; D)] except for tube voltage on 50 call patients for BCTA and divided them into two groups (25 people for a group, group A: 80, group B: 120kVp). From all the acquired images, set a ROI(Region of Interest) on four spots such as left cerebral artery, right cerebral artery, posterior cerebral artery and cerebral parenchyma to compare quantitative evaluation, qualitative evaluation and effective dose after measuring CT number value from Picture Archiving Communications System(PACS). Evaluating images with CT number acquired from BCTA examination, images with 80 kVp was 18% higher in Signal to Noise Ratio and 19% in Contrast to Noise Ratio than those with 120 kVp. It was seen that expose dose was decreased by over 50% with tube voltage 80 kVp than with 120 kVp. Group A (25 patients) was examination with tube voltage 80kVp while group B with 120 kVp to examine radiation dose and Image quality. It is considered effective to inspect with lower tube voltage than with conventional high kVp, which can reduce radiation dose without any affect on diagnosis.

Automatic severity classification of dysarthria using voice quality, prosody, and pronunciation features (음질, 운율, 발음 특징을 이용한 마비말장애 중증도 자동 분류)

  • Yeo, Eun Jung;Kim, Sunhee;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • This study focuses on the issue of automatic severity classification of dysarthric speakers based on speech intelligibility. Speech intelligibility is a complex measure that is affected by the features of multiple speech dimensions. However, most previous studies are restricted to using features from a single speech dimension. To effectively capture the characteristics of the speech disorder, we extracted features of multiple speech dimensions: voice quality, prosody, and pronunciation. Voice quality consists of jitter, shimmer, Harmonic to Noise Ratio (HNR), number of voice breaks, and degree of voice breaks. Prosody includes speech rate (total duration, speech duration, speaking rate, articulation rate), pitch (F0 mean/std/min/max/med/25quartile/75 quartile), and rhythm (%V, deltas, Varcos, rPVIs, nPVIs). Pronunciation contains Percentage of Correct Phonemes (Percentage of Correct Consonants/Vowels/Total phonemes) and degree of vowel distortion (Vowel Space Area, Formant Centralized Ratio, Vowel Articulatory Index, F2-Ratio). Experiments were conducted using various feature combinations. The experimental results indicate that using features from all three speech dimensions gives the best result, with a 80.15 F1-score, compared to using features from just one or two speech dimensions. The result implies voice quality, prosody, and pronunciation features should all be considered in automatic severity classification of dysarthria.

Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape (익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2020
  • This study aims to improve the flow and noise performances of an axial-flow fan for cooling the machine room in a refrigerator by using airfoil-cascade analysis and surface ridge shape. First, the experimental evaluations using a fan performance tester and an anechoic chamber are performed to analyze the flow and noise performances of the existing fan system. Then, the corresponding flow and noise performances are numerically assessed using the Computational Fluid Dynamics (CFD) techniques and the Ffowcs-Williams and Hawkings (FW-H) equation, and the validity of numerical results are confirmed through their comparisons with the experimental results. The analysis for the flow of a cascade of airfoils constructed from the existing fan blades is performed, and the pitch angles for the maximum lift-to-drag ratio are determined. The improved flow performance of the new fan applied with the optimum pitch angles is confirmed. Then, the fan blades with surface ridges on their pressure sides are devised, and the reduction of aerodynamic noise of the ridged fan is numerically confirmed. Finally, the prototype of the final fan model is manufactured, and improvements in the flow and noise performances of the prototype are experimentally confirmed.

Preparation and properties of antibacterial activated carbon fiber (항균성 탄소섬유의 제조와 특성)

  • 오원춘;김범수;임창성;장원철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.165-171
    • /
    • 2002
  • The study on the adsorption, the surface properties and the antibacterial effects of the metal-treated pitch based activated carbon fibers was carried out. From the adsorption studies on the series of metal-treated activated carbon fiber, the specific surface areas of the metal treated activated carbon fiber obtained from BET equation were in the range of 113.2~1574 $m^2$/g for the Ag-ACFs. And that of Cu treated ACF are distributed to 688.2-887.8 $\m^2$/g. And, the specific surface areas of the Ni-treated pitch based ACFs were in the range of 692.6~895.2 $\m^2$/g. From the ${\alpha}_s$- method, 0.06~1.1 cm^3/g of the micropore volumes were obtained from Ag-ACFs. And, 0.1~0.2 cm^3/ and 0.2~0.6 cm^3/g of the micropore volumes were obtained from Cu and Ni-ACFs, respectively. And, from the SEM morphology results, it was observed that the surface of activated carbon fiber are partially blocked and coated by metal after the treatment. Finally, from the antibacterial effects of metal-treated activated carbon fiber against E. coli, the areas of antibacterial effect become larger with the increase in mole ratio of metal treated. And, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5~100 % and the antibacterial effect was increased with the increase in mole concentration of metal treated.

A $64\times64$ IRFPA CMOS Readout IC for Uncooled Thermal Imaging (비냉각 열상장비용 $64\times64$ IRFPA CMOS Readout IC)

  • 우회구;신경욱;송성해;박재우;윤동한;이상돈;윤태준;강대석;한석룡
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.27-37
    • /
    • 1999
  • A CMOS ReadOut Integrated Circuit (ROlC) for InfraRed Focal Plane Array (IRFPA) detector is presented, which is a key component in uncooled thermal imaging systems. The ROIC reads out signals from $64\times64$ Barium Strontium Titanate (BST) infrared detector array, then outputs pixel signals sequentially after amplifying and noise filtering. Various design requirements and constraints have been considered including impedance matching, low noise, low power dissipation and small detector pitch. For impedance matching between detector and pre~amplifier, a new circuit based on MOS diode structure is devised, which can be easily implemented using standard CMOS process. Also, tunable low pass filter with single~pole is used to suppress high frequency noise. In additions, a clamping circuit is adopted to enhance the signal~to-noise ratio of the readout output signals. The $64\times64$ IRFPA ROIC is designed using $0.65-\mu\textrm{m}$ 2P3M (double poly, tripple metal) N~Well CMOS process. The core part of the chip contains 62,000 devices including transistors, capacitors and resistors on an area of about $6.3-mm\times6.7-mm$.

  • PDF

Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor (고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리)

  • Jung, Min-Jung;Ko, Yoonyoung;Kim, Kyung Hoon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.638-644
    • /
    • 2017
  • Pitch based activated carbon fibers for electric double layer capacitor (EDLC) electrodes were treated by oxyfluorination via varying the ratio of fluorine and oxygen gases to improve high power property. As the partial pressure of fluorine increased, the oxyfluorinated activated carbon fibers showed an increase of linear fluorine functional groups. While the oxygen functional groups increased, no changes was observed with respect to the partial gas pressure. The specific surface area and pore volume decreased due to the etching reaction on the activated carbon fiber surface through oxyfluorination, but the mesopore volume increased about 4.5 times. In the case of activated carbon fibers treated with 50% of the fluorine gas partial pressure, the specific capacitance increased to about 29% and 61% at scan rates of 5 and 50 mV/s, respectively. The improvement of the specific capacitance was believed to be due to the introduction of oxygen and fluorine functional groups on the activated carbon fiber surface and the increase of mesopores through oxyfluorination.