• Title/Summary/Keyword: Pitch ratio

Search Result 527, Processing Time 0.024 seconds

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch (석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.561-567
    • /
    • 2018
  • In this study, the electrochemical characteristics of Silicon/Carbon anode materials were analyzed to improve the cycle stability of silicon as an anode materials of lithium ion battery. Porous silicon was prepared from TEOS by the $st{\ddot{o}}ber$ method and the magnesiothermic reduction method. Silicon/Carbon anode materials were synthesized by varying the mass ratio between porous silicon and pitch. Physical properties of the prepared Silicon/Carbon anode materials were analyzed by XRD and TGA. Also the electrochemical performances of Silicon/Carbon anode materials were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DEC = 1 : 1 vol%). The Silicon/Carbon anode composite (silicon : carbon = 5 : 95 in weight) has better capacity (453 mAh/g) than those of other composition cells. The cycle performance has an excellent capacity retention from 2nd cycle to 30th cycle.

Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes (다양한 형상에 따른 타원형 핀-튜브 열교환기의 열전달 특성에 관한 수치해석)

  • Yoo, Jae Hwan;Yoon, Jun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (AR), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CFD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1-5 m/s. RSM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the AR and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness (막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향)

  • Kim, Sun-Min;Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow through cylindrical and fan-shaped holes and the film cooling of these holes at low and high blowing ratios. Compressible Reynoldsaveraged Navier-Stokes equations and the energy equation are solved using a finite-volume-based solver, and a shearstress transport model is used as the turbulence closure. The effects of the compound angle, pitch to diameter ratio, and lateral expansion angle of the hole on the film-cooling effectiveness are evaluated by the film-cooling effectiveness. It is observed that the compound angle of the hole enhances the film performance for the cylindrical hole, and a small hole pitch induces interactions between the coolants from the adjacent holes, thus reducing the film-cooling performance.

Analysis on the Effects of Sunshine Environment by Overpass Structure in Urban Areas (도시부 고가구조물에 의한 일조환경 영향분석)

  • Kum, Ki-Jung;Kim, Jong-Bo;Choi, Yong-Gil;Kim, Young-Jun
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • Current sunshine regulations of our country, focused on common houses and general construction, are failing to reflect adequately the characteristics of roads and elevated structures. Besides, researches are chiefly being conducted on a pitch between common houses and its diverse effects, neglecting clearance between a road or elevated structure and a residential area, environmental elements brought on by structures, such as sunshine difficulty, and their resultant factors Therefore, this study, focused on the sunshine environment of elevated structures adjacent to a residential district, as part of all roads and elevated structures, looked over currently used clearance adequacy level and analyzed the characteristics of structures in relation to an angle of direction. Then, clearance ratio by heights was calculated through a pitch by characteristics of a structure. With a view to minimize the sunshine difficulty that might occur in the future construction, it aims to propose the basic data needed for calculating the minimum clearance, while emphasizing the necessity for institutional alignment on structures.

  • PDF

A Captive Model Test on Hydrodynamic Force and Neutral Level Flight of BB2 Submarine in Straight Operation at Near Free Surface with Different Depths (자유수면 근처에서 직진하는 BB2 잠수함의 심도별 유체력과 중립운항에 대한 구속모형시험 연구)

  • Kwon, Chang-Seop;Kim, Dong-Jin;Yun, Kunhang;Kim, Yeon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.288-295
    • /
    • 2022
  • In this study, the force and moment acting on a Joubert BB2 submarine model at depths near the free surface were measured through a captive model test with the scale ratio of 1/15. Based on the experiment, the pitch moment and heave force due to the "Tail suction effect", including the change in surge force with depth near the free surface, were quantitatively analyzed. The change of force and moment according to the relative position of the sail and the free surface was reviewed with the free surface waves generated for each depths. As a result, the angle of attack of the hull to counteract the pitch moment induced by the tail suction effect was derived. The effect of the hydrostatic moment component according to the angle of attack on the equilibrium of pitch moment was also taken into account. The control plane performance tests for the X-type rudder and sail plane were conducted in snorkel and surface depth conditions to figure out the control plane angles for the neutral level flight of the submarine at near free surface. The results of this study are expected to be used as a reference data for the neutral level flight of the submarine at near free surface operation in the free running model test as well as numerical studies.

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond (나노다이아몬드가 첨가된 탄소블록의 열전도도 특성)

  • Jun Soong Lee;Ji Hun Mun;Sungwook Joo;Seung Uk Lee;Min Il Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.608-612
    • /
    • 2023
  • Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

A User-friendly Remote Speech Input Method in Spontaneous Speech Recognition System

  • Suh, Young-Joo;Park, Jun;Lee, Young-Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.38-46
    • /
    • 1998
  • In this paper, we propose a remote speech input device, a new method of user-friendly speech input in spontaneous speech recognition system. We focus the user friendliness on hands-free and microphone independence in speech recognition applications. Our method adopts two algorithms, the automatic speech detection and the microphone array delay-and-sum beamforming (DSBF)-based speech enhancement. The automatic speech detection algorithm is composed of two stages; the detection of speech and nonspeech using the pitch information for the detected speech portion candidate. The DSBF algorithm adopts the time domain cross-correlation method as its time delay estimation. In the performance evaluation, the speech detection algorithm shows within-200 ms start point accuracy of 93%, 99% under 15dB, 20dB, and 25dB signal-to-noise ratio (SNR) environments, respectively and those for the end point are 72%, 89%, and 93% for the corresponding environments, respectively. The classification of speech and nonspeech for the start point detected region of input signal is performed by the pitch information-base method. The percentages of correct classification for speech and nonspeech input are 99% and 90%, respectively. The eight microphone array-based speech enhancement using the DSBF algorithm shows the maximum SNR gaing of 6dB over a single microphone and the error reductin of more than 15% in the spontaneous speech recognition domain.

  • PDF

Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members (모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Kim, Yeong-Nam;Kim, Jeong-Ho;Kim, Seon-Gyu;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.