• 제목/요약/키워드: Pitch Tracking Algorithm

검색결과 21건 처리시간 0.023초

Thai Classical Music Matching Using t-Distribution on Instantaneous Robust Algorithm for Pitch Tracking Framework

  • Boonmatham, Pheerasut;Pongpinigpinyo, Sunee;Soonklang, Tasanawan
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1213-1228
    • /
    • 2017
  • The pitch tracking of music has been researched for several decades. Several possible improvements are available for creating a good t-distribution, using the instantaneous robust algorithm for pitch tracking framework to perfectly detect pitch. This article shows how to detect the pitch of music utilizing an improved detection method which applies a statistical method; this approach uses a pitch track, or a sequence of frequency bin numbers. This sequence is used to create an index that offers useful features for comparing similar songs. The pitch frequency spectrum is extracted using a modified instantaneous robust algorithm for pitch tracking (IRAPT) as a base combined with the statistical method. The pitch detection algorithm was implemented, and the percentage of performance matching in Thai classical music was assessed in order to test the accuracy of the algorithm. We used the longest common subsequence to compare the similarities in pitch sequence alignments in the music. The experimental results of this research show that the accuracy of retrieval of Thai classical music using the t-distribution of instantaneous robust algorithm for pitch tracking (t-IRAPT) is 99.01%, and is in the top five ranking, with the shortest query sample being five seconds long.

Efficient Tracking of Speech Formant Using Closed Phase WRLS-VFF-VT Algorithm

  • Lee, Kyo-Sik;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권2E호
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, we present an adaptive formant tracking algorithm for speech using closed phase WRLS-VFF-VT method. The pitch synchronous closed phase methods is known to give more accurate estimates of the vocal tract parameters than the pitch asynchronous method. However the use of a pitch-synchronous closed phase analysis method has been limited due to difficulties associated with the task of accurately isolating the closed phase region in successive periods of speech. Therefore we have implemented the pitch synchronous closed phase WRLS-VFF-VT algorithm for speech analysis, especially for formant tracking. The proposed algorithm with the variable threshold(VT) can provide a superior performance in the boundary of phone and voiced/unvoiced sound. The proposed method is experimentally compared with the other method such as two channel CPC method by using synthetic waveform and real speech data. From the experimental results, we found that the block data processing techniques, such as the two-channel CPC, gave reasonable estimates of the formant/antiformant. However, the data windows used by these methods included the effects of the periodic excitation pulses, which affected the accuracy of the estimated formants. On the other hand the proposed WRLS-VFF-VT method, which eliminated the influence of the pulse excitation by using an input estimation as part of the algorithm, gave very accurate formant/bandwidth estimates and good spectral matching.

  • PDF

MW 풍력터빈의 피드포워드 제어 (Feed Forward Control of the MW Wind Turbine)

  • 임창희;남윤수;김정기;최한순
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

에너지 연산자에 기초한 간단한 피치 추적 방법 (A Simple Pitch Tracking Algorithm based on the Energy Operator)

  • Tai-Ho Lee
    • 융합신호처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • 유성음의 피치주파수 궤적을 추정할 수 있는 새로운 방법을 제시하였다. 이 방법은 에너지연산자[1]를 두 번 적용하는데 기초하고 있다. Kaiser의 에너지연산자는 정현파의 진폭과 주파수 정보를 추출하는 기능을 가지고 있다. 변조모형에 의하면 유성음은 피치 신호로 변조된 포만트들의 합성으로 파악될 수 있으므로 이 파형의 진폭 포락선을 추출해서 피치 신호와 유사한 파형을 얻는다. 이 파형의 평균 주파수를 검출하여 피치 주파수를 구하는 것이다. 앞부분은 Gopalan의 접근법[9]과 마찬가지이나, 뒷부분의 LPC-스펙트럼 분석등의 과정 대신 또 한번 에너지 연산자를 적용하도록 하여 매우 단순화되고 온라인 적용이 가능한 알고리듬을 얻었다. 추정 결과는 거친 편이지만 온라인으로 피치 궤적의 일반적 스케치를 얻는데 유용할 것으로 기대된다.

  • PDF

초음파 센서기반 추적 알고리즘을 이용한 자동 수술 조명 로봇 시스템 (Implementation of Auto Surgical Illumination Robotic System Using Ultrasonic Sensor-Based Tracking Algorithm)

  • 최동걸;이병주;김영수
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.363-368
    • /
    • 2007
  • Most surgery illumination systems have been developed as passive systems. However, sometimes it is inconvenient to relocate the position of the illumination system whenever the surgeon changes his pose. To cope with such a problem, this study develops an auto-illumination system that is autonomously tracking the surgeon's movement. A 5-DOF serial type manipulator system that can control (X, Y, Z, Yaw, Pitch) position and secure enough workspace is developed. Using 3 ultrasonic sensors, the surgeon's position and orientation could be located. The measured data aresent to the main control system so that the robot can be auto-tracking the target. Finally, performance of the developed auto-illuminating system was verified through a preliminary experiment in the operating room environment.

A Novel Two-Level Pitch Detection Approach for Speaker Tracking in Robot Control

  • Hejazi, Mahmoud R.;Oh, Han;Kim, Hong-Kook;Ho, Yo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.89-92
    • /
    • 2005
  • Using natural speech commands for controlling a human-robot is an interesting topic in the field of robotics. In this paper, our main focus is on the verification of a speaker who gives a command to decide whether he/she is an authorized person for commanding. Among possible dynamic features of natural speech, pitch period is one of the most important ones for characterizing speech signals and it differs usually from person to person. However, current techniques of pitch detection are still not to a desired level of accuracy and robustness. When the signal is noisy or there are multiple pitch streams, the performance of most techniques degrades. In this paper, we propose a two-level approach for pitch detection which in compare with standard pitch detection algorithms, not only increases accuracy, but also makes the performance more robust to noise. In the first level of the proposed approach we discriminate voiced from unvoiced signals based on a neural classifier that utilizes cepstrum sequences of speech as an input feature set. Voiced signals are then further processed in the second level using a modified standard AMDF-based pitch detection algorithm to determine their pitch periods precisely. The experimental results show that the accuracy of the proposed system is better than those of conventional pitch detection algorithms for speech signals in clean and noisy environments.

  • PDF

조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계 (LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command)

  • 서형규;박재영;안정훈
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

외바퀴 로봇의 동적 속도 제어 (Dynamic Speed Control of a Unicycle Robot)

  • 한인우;황종명;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

차량 부밍소음의 청감 변화 인지를 위한 주파수 역치 (Difference Limen for Just Noticeable Change of Booming Sensation in Frequency)

  • 신성환;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.621-624
    • /
    • 2005
  • Among many auditory feelings for the vehicle interior noise, booming is considered as the most important nuisance to the passenger and developer. Because the main source of booming noise is a power train system including engine, in general, it consists of tonal components related to fundamental engine rotation and its harmonics including the firing frequency. Therefore, it is demanded to extract the effective tonal components only by using pitch extraction algorithm based on the place theory enable to find aurally relevant tonal components. However, there is a difference between booming sensation and pitch perception according to frequency change of tonal component. In this study, subjective listening test using a tracking method was performed to find the difference limen for just noticeable change of booming sensation in frequency. 20 Koreans and 10 Japanese were participated in this test and the results obtained from Koreans and Japanese were compared with each other. Finally, 5Hz was determined as the difference limen for just noticeable change of booming sensation in frequency, and by applying this value to booming analysis using pitch concept, it was confirmed that the degree of prediction of booming sensation was improved.

  • PDF

중계 영상을 활용한 야구 경기 분석 방법 (Baseball Game Analysis Method Using Broadcast Video)

  • 손종웅;이명진
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.576-586
    • /
    • 2020
  • 레이더나 라이더 센서를 활용한 야구 경기 분석은 많은 비용이 요구된다. 본 논문에서는 중계 비디오에서 피치 샷과 타구 샷을 검출하고, 카메라의 움직임 기반 타구 궤적 생성 알고리즘을 제안한다. 제안하는 알고리즘은 객체 검출과 옵티컬 플로우 기반 피치 샷과 타구 샷 검출 이후, 프레임 간 변환 관계를 통해 프레임 내 타구 위치와 타구 궤적을 계산한다. 제안 방법은 KBO 중계 영상 시퀀스 3개에 대해 성능을 평가하였고 피치 샷과 타구 샷 검출 정확도와 검출률은 89-95[%] 이내의 성능을 보였으며, 평균 타구 위치 거리차이는 13.6[m], 방향 차이 7.5°, 파울 분류 정확도 98.6%의 성능을 보였다.