• Title/Summary/Keyword: Pitch Strength

Search Result 199, Processing Time 0.023 seconds

Preparation of Carbon Solid from Dormant Mesophase Pitch without using a Binder (잠재적 이방성 핏치를 이용한 탄소성형체 제조)

  • 김제영;이성영;최재훈;박양덕
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.396-402
    • /
    • 1992
  • Carbon solid was prepared from dormant mesophase pitch (DMPP) without using a binder and its properties were characterized. DMPP powder was stabilized with air or nitric acid in pretreatment stage so that it might not soften in later heat ttreatment stage. Optimum sintering properties were obtained from carbon powder with 2.36∼2.38 of C/H atomic ratio and 1.27∼1.40 of C/O atomic ration in air stabilization. In nitric acid stabilization, optimum sintering properties were obtained when 20∼40 vol.% of nitric acid solution was used. Compressive strength increased up to 1200$^{\circ}C$ of heat treatment temperature, and the highest compressive strength and bulk density of carbon solid from DMPP were 3000 kgf/㎤, respectively. The optical properties of carbon solid obtained was fine mosaic structure. Carbon solid after graphitization showed the properties of hard carbon due to stabilization and its shore hardness was 120.

  • PDF

Joining Characteristics of Corrugated Polymer Surface by Laser (표면 요철 처리 된 광경화성수지의 레이저 접합 특성)

  • Yoon, Sung Chul;Choi, Hae-Woon
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.6-11
    • /
    • 2015
  • Specially designed and 3D printed samples were prepared and joined by a diode laser source. To increase the strength of joining and reliability of samples, the surface was patterned by using a 3D printer. The joining surface was prepared as hemispherical shape with no-patterns, 0.5mm pitch, 0.75mm pitch and 1mm pitch. The optical properties of samples were measured by using an integrated sphere where classical Kubelka-Munk theory and modified Richard-Mudgetts theory for the analysis applied. Scanning speed was set at 500mm/min and laser power was varied between 9 and 10watts for the preliminary joining characteristic analysis.

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

USE OF ENZYMES FOR MODIFICATION OF DISSOLVED AND COLLOIDAL SUBSTANCES IN PROCESS WATERS OF MECHANICAL PULPING

  • Johanna Buchert;Annikka Mustrnata;Peter Spetz;Rainer Ekman;Kari Luukko
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.115-119
    • /
    • 1999
  • During mechanical pulp production and blcaching wood components, such as extractives, carbohydrates and lignin are dissolved and dispersed into the process waters. These components are called dissolved and colloidal substances(DCS). DCS can accumulate during water circulation and can in turn affect paper machine runnability and also the strength and optical properties of the paper. In this work DCS fraction origination from TMP process were treated with enzymes acting on triglycerides. glucomannans, and lignin and the effect of enzymatic treatments on the water composition as well as sheet properies were evaluated. Lipases were found to modify the chemical structure of the extractives resulting in more hydrophilic fibre surface and subsequent improvement in the sheet strength properties. Mannanase treatment, on the other hand, destabilized pitch. As a result, aggregation of pitch to the fibres was observed which in turn resulted in impaired strength properties. Laccase could effectively polymerize lignans and the reaction products seemed to be sorbed onto the fibres.

A study on the design of cycloidal pitch reducer for the 2MW-class wind turbine (2MW급 풍력발전기 사이클로이드 피치감속기 설계에 대한 연구)

  • Min, Young-Sil;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.895-902
    • /
    • 2015
  • In this paper, finite element analysis of a cycloidal pitch reducer for a 2 MW-class wind turbine is reviewed. The system is composed of one cycloid set, one spur gear set, an input shaft, an output shaft, and a housing. The system was also evaluated for stability by analyzing spur gear strength according to ISO 6336. An analysis of the natural vibration characteristics of the 2 MW-class wind turbine cycloid pitch reducer was performed with attention to critical speed with input mass unbalance, output mass unbalance, spur gear transmission error, cycloid gear transmission error, and excitation frequency.

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

Densification of matrix graphite for spherical fuel elements used in molten salt reactor via addition of green pitch coke

  • He, Zhao;Zhao, Hongchao;Song, Jinliang;Guo, Xiaohui;Liu, Zhanjun;Zhong, Yajuan;Marrow, T. James
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1161-1166
    • /
    • 2022
  • Green pitch coke with an average particle size of 2 mm was adopted as densifier and added to the raw materials of conventional A3-3 matrix graphite (MG) to prepare modified A3-3 matrix graphite (MMG) by the quasi-isostatic molding method. The structure, mechanical and thermal properties were assessed. Compared with MG, MMG had a more compact structure, and exhibited improved properties of higher mechanical strength, higher thermal conductivity and better molten salt barrier performance. Notably, under the same infiltration pressure of 5 atm, the fluoride salt occupation of MMG was only 0.26 wt%, whereas it was 15.82 wt% for MG. The densification effect of green pitch coke endowed MMG with improved properties for potential use in the spherical fuel elements of molten salt reactor.

Finite Element Analysis on the Pitch Design of Ring Knot Type Membrane Unit (링 마디식 멤브레인 유니트의 피치설계에 관한 유한요소해석)

  • Kim Chung Kyun;Lee Young-Suk;Cha Baeg-Soon;Oh Byoung-Taek;Yoon In Soo;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.58-64
    • /
    • 1999
  • This paper has been analyzed for the stress behavior problems of the ring knot membrane unit using the finite element method about the pitch design of the membrane unit, which is one of the most important parameters in manufacturing of the membrane type LNG storage tanks. The FEM results have been compared those of the existing pitch design length. The safety problem of the ring knot membrane model, which is considered in this study, does not come out any more no matter what the pitch length is used in the extra large LNG storage tanks. But in the case of the membrane for LNG tankers, it is advantageous to design the pitch short because of fatigue strength caused by repeated loadings. Looking at the deformation behaviors of the membrane corrugation, the deformation of the hight in the y direction occurs $15{\~}50\%$ more than that of the width in the z direction. It shows also that the deformation of the membrane with $-162^{\circ}C$ cryogenic temperature is not so great compared with the deformation by hydrostatic pressure.

  • PDF

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF