• Title/Summary/Keyword: Piston-ring/Cylinder

Search Result 77, Processing Time 0.016 seconds

Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1 (5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1)

  • Kim, Jin-Gyeong;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

Implementation of Power Line MODEM for TDC Pulse Detection of SEPA

  • Yang, Hyun-Suk;Lee, Byung-Yong;Kim, Yoon-Sik;Seo, Dong-Hoan;Kim, Sung-Hwan;Kwon, Yeong-Gwal;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.430-436
    • /
    • 2008
  • Recently, there are many cases to use a ship's engine performance analyzer(SEPA) to measure pressure in cylinder and top dead center(TDC) of piston of engine, and analyze its performance such as fuel injection time and horsepower as well as wear of piston ring. But, SEPA needs TDC pulses($T(1){\sim}T(n)$) generated when pistons of engine are located to the TDC position ($TDC(1){\sim}TDC(n)$), these pulses are gathered from sensors connected to gear wheel of the propeller shaft in the remote distance from the measurement point. Therefore, operators need a long wire cable(WRC) to TDC detecting sensor to get these pulses, but this method is a very uncomfortable and expensive in case of installation, and it might decrease user's purchase desire. In this paper, we design and fabricate a small and inexpensive MODEM cable(M0C) so that it may be available to transmit TDC pulse generated from sensor in propeller shaft through existing power line. We also verify the facts that this MOC can be applied to SEPA and the effectiveness of the system through the experiments.

The development of a wear resistant hard-metal tappet in diesel engines

  • Shim, D.S.;Song, K.C.;Kim, K.W.;Cho, J.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.401-402
    • /
    • 2002
  • Diesel engines have many sliding parts with solid body contact. For example, a piston-ring and a cylinder bore, a valve and a valve-seat, a cam and a valve tappet. These parts have a severe wear problem. during engine life times. During these times, the valve tappet has abnormal wear such as scuffing and pitting due to a high hertzian contact stress between the cam and the tappet. Excessive wear problems frequently occur to both the cam and the tappet. To solve these problems, we developed an advanced wear resistant tappet. The developed tappet consisted of a hard-metal wear part and a steel body. To increase a bonding strength, those two parts, were directly bonded to each other. Also to decrease a bonding temperature, we developed the composition of Ni-binder materials in the hard metal. To estimate the wear characteristics of the newly developed tappet, we performed wear tests and engine dynamo tests in order to compare them with a conventional Fe-base tappet. As a result, the newly developed tappet has better wear characteristics than those of the conventional tappet. In addition, we performed a 100,000km field-test, and the newly developed tappet showed much improved wear resistance.

  • PDF

A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR (PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구)

  • Lee J.H.;Lee Y.W.;Kim J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

Wear Characteristics of Cylinder-Liner Materials for Diesel Engine at Elevated Temperature (디젤엔진용 실린더 라이너 소재의 고온 마모특성)

  • Kim, Jin-Yeol;Kim, Jae-Hoon;Oh, Kwang-Keun;Lee, Seung-Hak;Chang, Joon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1131-1136
    • /
    • 2015
  • In a diesel engine, the wear of the cylinder liner occurs because of the continuous reciprocating motion of the piston ring. This wear reduces the performance of the diesel engine and shortens its service life. This study evaluated the wear characteristics of GT metal and a conventional metal used for cylinder liners using a ship's diesel engine. Wear tests were performed at temperatures of $25^{\circ}C$, $175^{\circ}C$, and $325^{\circ}C$, and under loads of 10 N, 30 N, and 50 N. The amount of wear, specific wear rate, and friction coefficient were evaluated for each condition. To analyze the wear mechanism, observations were made on an SEM. In the case of both metals, abrasive and adhesion wear occurred on the wear surfaces at room temperature, and corrosion wear was observed at high temperatures. The amount of wear and the specific wear rate of the GT metal were lower than those of the conventional metal at all temperatures, and hence it can be concluded that the wear characteristics of the GT metal are much better.

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

An Experimental Analysis for System Optimization to Reduce Smoke at WOT with Low Volatile Fuel on Turbo GDI Engine (저 기화성 연료를 사용한 직접분사식 과급 가솔린엔진에서 전 부하 스모크 저감을 위한 시스템 최적화에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk;Lee, Seangwock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • This study is a part of the high pressure injection system development on the Turbo GDI engine in order to reduce smoke emission in case of using the low volatile(high DI) fuel which is used as normal gasoline fuel in the US market. Firstly, theoretical approach was done regarding gasoline fuel property, performance, definition of particle matters and its creation as well as problems of the high DI fuel. In this experimental study, 2L Turbo GDI engine was selected and optimized system parameter was inspected by changing fuel, fuel injection mode (single/multiple), fuel pressure, distance between injector tip and combustion chamber, start of injection, intake valve timing in engine dyno at all engine speed range with full load. In case of normal gasoline fuel, opacity was contained within 2% in all conditions. On the other hands, in case of low volatile fuel (high DI fuel), it was confirmed that the opacity was rapidly increased above 5,000 rpm at 14.5 ~ 20 MPa of fuel pressure and there were almost no differences on the opacity(smoke) between 17 MPa and 20 MPa fuel pressure. According to the SOI retard, smoke decrease tendency was observed but intake valve close timing change has almost no impact on the smoke level in this area. Consequently, smoke decrease was observed and 16% at 6000rpm respectively with injector washer ring installed. By removing injector washer to make injector tip closer to the combustion chamber, smoke decrease was observed by 46% at 5,500 rpm, 42% at 6,000 rpm. It is assumed that the fuel injection interaction with cylinder head, piston head, intake and exhaust valve is reduced so that impingement is reduced in local area.