• Title/Summary/Keyword: Piston engine

Search Result 465, Processing Time 0.024 seconds

A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System (EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

Starting Mode Analysis of Tubular-type Linear Generator for Free-Piston Engine with Dynamic Characteristics (Free-piston 엔진용 원통형 선형 발전기의 기동을 위한 동특성 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Choi, Ho-Yong;Hong, Sun-Ki;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.124-125
    • /
    • 2007
  • 본 연구에서는 Free-piston 엔진용 원통형 선형 발전기의 전동기 운전을 이용한 기동에 관한 연구를 수행하였다. Free-piston 엔진의 피스톤이 흡기, 압축, 폭발, 배기 과정에 따라 정상 상태로 왕복운동을 하기 위해서는 기동 시 정지상태인 피스톤을 외부의 힘으로 움직여 연소실에 있던 공기를 밀어내고, 연료를 연소실안에 흡입한 뒤 다시 압축시켜 플러그를 통해 폭발시켜 주어야 한다. 이 과정에서 별도의 전동기를 사용하는 대신 Free-piston 엔진에서 사용하는 원통형 선형 발전기를 전동기로 사용하여 엔진의 기동을 위해 요구되는 속도와 토크를 만족시키는지 동특성 해석을 하였고, free-piston 엔진을 기동시키기에 충분한 속도와 토크를 낼 수 있다는 결론을 얻었다.

  • PDF

Friction Characteristics of Piston Assembly (II) -Experiment- (피스톤계 마찰 특성 (II) -실험적 연구-)

  • Cho, Myung-Rae;Ha, Kyoung-Pyo;Kim, Joong-Soo;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.88-93
    • /
    • 2003
  • The aim of this paper is to investigate the friction characteristics of piston assembly, which composed of ring pack and piston skirt. The friction force of piston assembly was measured by using the movable liner in the single cylinder engine, and the various parameters were tested. The friction force was suddenly increased at the expansion stroke due to higher cylinder pressure. The viscous friction was dominant at the mid stroke, but the boundary friction was dominant at the top and bottom dead centers. Through the experiment, we could validate previous theoretical study, and confirm that th e radial clearance and ring tension were very effective to reduce friction loss of piston assembly.

Characteristics of Heat Transfer for Small-size Marine Diesel Engine (소형박용 디젤엔진의 전열특성)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates (가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험)

  • Sim, Kyuho;Kim, Mingi;Lee, Yoon-Pyo;Jang, Seon-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

SIMULATION OF KNOCK WITH DIFFERENT PISTON SHAPES IN A HEAVY-DUTY LPG ENGINE

  • CHOI H.;LIM J.;MIN K.;LEE D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, a three-dimensional transient simulation with a knock model was performed to predict knock occurrence and autoignition site in a heavy-duty LPG engine. A FAE (Flame Area Evolutoin) premixed combustion model was applied to simulate flame propagation. The coefficient of the reduced kinetic model was adjusted to LPG fuel and used to simulate autoignition in the unburned gas region. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the results of the modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed in order to detect knock occurrences, flame arrival angles, and autoignition sites. Knock occurrence and position were compared for different piston bowl shapes. The simulation concurred with engine experimental data regarding the cylinder pressure, flame arrival angle, knock occurrence, and autoignition site. Furthermore, it provided much information about in-cylinder phenomena and solutions that might help reducing the knocking tendency. The knock simulation model presented in this paper can be used for a development tool of engine design.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity (비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석)

  • Lee, S.S.;Kim, K.M.;Kim, B.G.;Chang, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF