• Title/Summary/Keyword: Piston engine

Search Result 465, Processing Time 0.023 seconds

The Behavior of Impinging Spray by Piston Cavity Geometry (PistonCavity 형상에 따른 충돌분류의 분무거동)

  • 이상석;김근민;김봉곤;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

The Study for Improving the Combustion of Biodiesel Fuel using Multi-cavity Piston (Multi-cavity Piston에 의한 바이오디젤유의 연소성 향상에 관한 연구)

  • Bang, Joong Cheol;Kim, Yong Jae;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.26-33
    • /
    • 2015
  • American NREL (National Renewable Energy Laboratory) reported that BD20 could reduce PM, CO, SOx and cancerogenic matters by 13.6%, 9.3%, 17.6% and 13% respectively, compared to diesel fuel. BD20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by employing multi cavity piston for improving the deterioration of combustibility caused by the higher viscosity of the biodiesel fuel such as BD20 with the combustion flames taken by a high speed camera and the cylinder pressure diagram. A 4-cycle single cylinder diesel engine was remodeled to a visible 2-cycle engine for taking the flame photographs, which has a common-rail injection system. The test was done at laboratory temperature of about $4{\sim}5^{\circ}C$.

An Experimental Study on the Manufacturing Technology of an Engine Piston (자동차용피스톤의 제조기술에 관한 실험적 연구)

  • 김영호;배원병;김형식;변홍석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.83-92
    • /
    • 1998
  • In this paper, an experimental study has been carried out to develop an aluminum forged piston which has good mechanical properties. Through the experiment, the cavity filling, microstructure and mechanical properties of the final product are investigated with respect to chosen process parameters, which are die shape, heat-treatment condition and preform shape. The mechanical properties of the forged piston are compared with these of the cast piston. As the results, an appropriate die-shape is obtained to produce a perfect piston. The suitable heat-treatment condition and preform-shape are found to good hardness and minute microstructure in the forged piston. And we could obtain the mechanical properties(tensile strength, elongation and hardness) of the forged piston are superior to these of the cast piston.

  • PDF

Engine Piston Ring의 윤활특성(제 1보)

  • 김세길;정재련;조시기;문견식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.11a
    • /
    • pp.29-33
    • /
    • 1991
  • 상업성장과 더불어 국내 자동차 산업이 급속도로 발전하고 있는 것이 현실이다. 이와 관련하여 내연기간의 연구 및 개발 회상에 대한 요구가 그 어느때보다도 절실한 시점에 와잇는것이 우리의 실정이다. 현재 내연기관에 있어서의 연구개발의 최대목적은 기관의 성능회상에 있다. 이러한 결과를 얻기 위해서는 여러가지 방법이 있으나 그 운동부분에서 마찰손시를 적게 하기 위한 노력을 경주하여야 함은 말할나위가 없다. 특히 자동차용 engine은 실린더의 크기가 작고 슬라이딩면의 며적이 비교적 크며, 저출력에서의 사용 빈도가 크기 때문에 마찰 손시이 차지하는 비율이 높다. Engine이 마찰 손실은 저부하 일수록 손실이 크며 이부분에서의 최대 손실은 engine 전체 손실의 약 50%까지 도달하고, 그중에서 마찰 손시의 30-50%를 engine의 piston ring과 cylinder 사이의 마찰력이 차지하는 것으로 알려지고 있다.

  • PDF

Trade-off Study of Propulsion Systems Weight Estimation for Tilt-rotor Personal Air Vehicle (Tilt-rotor 항공기 동력계통 중량 추정에 대한 상쇄연구)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • This paper presents the trade-off study of conducting a survey of the weights for various kind of propulsion systems installed in the Smart Unmanned Aerial Vehicle TR-100, a tilt-rotor vehicle, which is developed by Korea Aerospace Research Institute, in order to predict the appropriate propulsion system for present and future Personal Air Vehicle, which has single mode and vertical take-off & landing. In order to perform the trade-off study, we set the requirements that the vehicle hovers for 1 hour with 1,000 kg maximum take off weights. In this study, the power systems are classified engine, which uses the fossil fuel - turboshaft engine, piston engine, diesel engine and rotary engine, and electric motor with fuelcell or Li-Ion battery. The results of trade-off study shows the power systems using fossil fuel are superior to using fuelcell or Li-Ion battery for weight of propulsion system. Also turboshaft engine is the best power system for the aspects of system weight, and the nexts are rotary engine, piston engine, diesel engine, electric motor with Li-Ion battery, and electric motor with fuelcell.

Simulation of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Hydrogen (수소 2행정 프리피스톤엔진의 SI-HCCI 변화에 관한 수치해석적 연구)

  • Hung, Nguyen Ba;Park, Kyuel;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.472-479
    • /
    • 2013
  • A free piston linear engine could be operated under HCCI combustion due to its variable compression ratios. To obtain HCCI combustion, the free piston linear engine needs a high compression ratio to achieve auto-ignition of the fuel/air mixture. In this study, an idea for obtaining a high compression ratio using the transition from SI combustion to HCCI combustion was proposed. The fuel used in this study is hydrogen, which is considered to be an environmentally friendly fuel. Besides, the effects of key parameters such as equivalence ratio (${\phi}$), load resistance ($R_L$) and intake temperature ($T_{in}$) on the SI-HCCI transition were numerically investigated. The simulation results show that the SI-HCCI transition is successful without any significant reduction of in-cylinder pressure as the intake temperature is increased from $T_{in}$=300K (SI mode) to $T_{in}$=450K (HCCI mode), while the load resistance and equivalence ratio are retained respectively at $R_L=120{\Omega}$ and ${\phi}$=0.6 in both SI mode and HCCI mode.

Pin-Boss Bearing Lubrication Analysis of a Diesel Engine Piston Receiving High Combustion Pressure (고 연소압을 받는 디젤엔진 피스톤의 핀-보스 베어링 윤활해석)

  • Chun, Sang-Myung;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated the effects on the film pressure distribution due to the change in maximum combustion pressure.

A Study on Hydraulic Control Characteristics of a Swashplate Type Axial Piston Pump-Regulator System by Linearization Analysis (사판식 액셜피스톤 펌프-레귤레이터계의 선형화해석에 의한 유압제어특성 고찰)

  • Jo, Seung-Ho;Kim, Won-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2535-2542
    • /
    • 2000
  • The regulator system has been modeled and combined to a swashplate type axial piston pump. Linear approximation has been performed for nonlinear coefficient terms of an axial piston pump-regulator model without significantly affecting accuracy. Based on the mathematical model of an axial piston pump-regulator system, a couple of characteristic curves of negative flow control and horsepower control are drawn, which show a good correlation with those of experimental results. So the simplified axial piston pump-regulator model in this paper is expected to be utilized not only for the design and analysis of hydraulic circuit of excavator but also for prevention of engine overload.

A Study on Effects of the Changes in Lower Combustion Pressures and Pressure-Viscosity Index on Pin-Boss Bearing Lubrication of a Diesel Engine Piston Receiving High Combustion Pressure (연소실 저압변화와 압력-점도지수가 디젤엔진 고압피스톤의 핀-보스 베어링 윤활에 미치는 영향 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated how the changes in combustion pressure at exhaust and intake stroke and the pressure-viscosity index effect on the film pressure distribution.