• 제목/요약/키워드: Piston damping valve

검색결과 20건 처리시간 0.022초

유압식 능동 현가시스템의 개발에 관한 연구 (A study on development of hydraulic active suspension system)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

유압식 능동 현가시스템의 설계 및 적용에 관한 연구 (A Study on the Application and Design of Hydraulic Active Suspension System)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

차량용 충격흡수기의 설계변수에 따른 성능고찰 (A Study on the Influence of Design Parameters on the Automotive Shock Absorber Performance)

  • 이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.167-177
    • /
    • 2003
  • In this study, a mathematical nonlinear dynamic model is introduced to predict the damping force of automotive shock absorber. And 11 design parameters were proposed for the sensitivity analysis of damping force. Design parameters consist of 5 piston valve design parameters, 5 body valve design parameters and 1 initial pressure of reservoir chamber air. All of these design parameters are main design parameters of shock absorber in the procedure of shock absorber design. The simulation results of this paper offer qualitative information of damping force variation according to variation of design parameters. Therefore, simulation results of this paper can be usefully use in the design procedure of shock absorber

차량용 충격흡수기의 비선형 동적거동 모델링 및 감쇠력 특성해석에 대한 연구 (A Study on the Nonlinear Dynamic Modeling and Analysis of Damping Force Characteristics of Automotive Shock Absorber)

  • 이춘태;곽동훈;정봉호;이지걸
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.104-111
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and comfort. In this study, a mathematical nonlinear dynamic model and computational method are introduced to study the flow and performance of shock absorber. The flow characteristics of components(piston and body valve) are investigated and applied to dynamic modeling of shock absorber to predict the damping force. The simulation results agree with the test data well. The shock absorber model proposed in this paper is applicable as a part of a full vehicle suspension simulation.

유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구 (A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

자동차용(自動車用) 충격흡수기(衝擊吸收器)의 해석(解析) 및 품질향상(品質向上)을 위(爲)한 설계방안(設計方案) (Analysis shockabsorber of automobile and Design Criterion)

  • 김형섭;이화석;오흥국
    • 한국안전학회지
    • /
    • 제2권1호
    • /
    • pp.59-71
    • /
    • 1987
  • A study has been made of the damping force phenomena of the shockabsorber for automobile. The main results obtained are as follows; 1) We can neglect friction loss between cylinder and piston, as it is very small compared to other damping force. 2) Damping force due to coil spring and disc valve shows comparatively stable at various piston speed and oil temperature. 3) Theoretical and experimental values are well agreed on relatively low piston speed. 4) Theoretical value on piston speed of 600mm/sec, 900mm/sec at oil temperature $20^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ is about 82% of experimental value. 5) Theretical value at oil temperature $-20^{\circ}C$, $0^{\circ}C$ is about 67% of experimental value.

  • PDF

Study on the Damping Performance Characteristics Analysis of Shock Absorber of Vehicle by Considering Fluid Force

  • Lee Choon-Tae;Moon Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.520-528
    • /
    • 2005
  • In this study, a new mathematical dynamic model of displacement sensitive shock absorber (DSSA) is proposed to predict the dynamic characteristics of automotive shock absorber. The performance of shock absorber is directly related to the vehicle behaviors and performance, both for handling and ride comfort. The proposed model of the DSSA has two modes of damping force (i.e. soft and hard) according to the position of piston. In this paper, the performance of the DSSA is analyzed by considering the transient zone for more exact dynamic characteristics. For the mathematical modeling of DSSA, flow continuity equations at the compression and rebound chamber are formulated. And the flow equations at the compression and rebound stroke are formulated, respectively. Also, the flow analysis at the reservoir chamber is carried out. Accordingly, the damping force of the shock absorber is determined by the forces acting on the both side of piston. The analytic result of damping force characteristics are compared with the experimental results to prove the effectiveness. Especially, the effects of displacement sensitive orifice area and the effects of displacement sensitive orifice length on the damping force are observed, respectively. The results reported herein will provide a better understanding of the shock absorber.

변위감응형 충격흡수기의 차량 동력학적 특성에 관한 연구 (A Study on the Vehicle Dynamic Characteristic of Displacement Sensitive Shock Absorber)

  • 이춘태;곽동훈;정봉호;이진걸
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.187-195
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and ride comfort. The displacement sensitive shock absorber has two modes of damping force (i.e. soft and hard) according to the position of piston. In this study, a mathematical nonlinear dynamic model is introduced to predict the performance of displacement sensitive shock absorber. Especially in this paper, the transient zone is considered and the simulation result is well fit with experimental data. And the vehicle dynamic characteristic of displacement sensitive shock absorber is presented using quarter car simulation model. The simulation results of frequency response are compared with passive shock absorber.

변위 감응형 충격흡수기에 관한 연구 (A Study on the Stroke Sensitive Shock Absorber)

  • 박재우;주동우;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.85-90
    • /
    • 1997
  • In the stroke sensitive shock absorber, the oil path is formed along the internal cylinder surface to make the eli flow during piston's upper-lower reciprocation movement. With constraint to the conventional shock absorbers which show one dynamic characteristic curve, stroke sensitive shock absorber shows two kins of dynamic characteristic according to the stroke, In the study, analysis on the damping force generation process and dynamic behaviour characteristics of stroke sensitive shock absorber is performed, the valve characteristics being considered more precise information about design and damping performance analysis.

  • PDF

모듈레이팅 밸브 및 유압 클러치의 설계 변수가 전후진 파워시프트 변속기의 변속 품질에 미치는 영향 (Effect of Design Parameters of Modulating Valve and Hydraulic Clutch on Shift Quality of a Power Shuttle Transmission)

  • 김경욱;정병학;박영준
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.187-198
    • /
    • 2003
  • This study was conducted to investigate the effect of design parameters of modulating valve and hydraulic clutch on the shift quality of a power shuttle transmission using a computer simulation. Computer simulation models of a hydraulic control system and a power shuttle drive train were developed and verified by an experimental power train in a laboratory. The software EASY5 was used for the modeling and simulation of the power shuttle transmission. Results of the study were summarized as follows: For a good shift quality. it is required to reduce the transient torque transmitted to the output shaft of the transmission as much as possible. This may be achieved by reducing the modulating time and clutch pressure. It was found that the design parameters most significantly affecting the modulating time and clutch pressure were the spring constant and displacement of a load piston of the modulating valve, and the spring constant and damping of the clutch piston. The modulating time decreased as the spring constant increased and increased as the displacement of the load piston decreased. The transient torque decreased as the modulating time increased. However their relationships were not always linear. As the damping decreased, both the modulating pressure and time decreased, which also resulted in a decrease in the transient torque. The spring constant of the clutch piston affected the modulating time and the peak transient torque. As the spring constant of the clutch increased, the peak transient torque decreased.