• 제목/요약/키워드: Piston Head

검색결과 81건 처리시간 0.019초

피스톤 헤드 온도에 오일 제트가 미치는 영향에 대한 연구 (Study of Oil Jet Effect on the Temperature of Piston Head)

  • 민선기
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.536-540
    • /
    • 2018
  • 엔진의 성능이 향상될수록 엔진 내부에서 연소되는 연료의 양이 증가하고 그에 따라 엔진의 온도는 증가하게 된다. 특히 피스톤 헤드의 경우 냉각이 어려우므로 피스톤 헤드의 온도가 높아지게 된다. 그러나 피스톤 헤드의 온도가 너무 높게 되면 피스톤 헤드 표면에서 이상 연소가 발생하기 쉬워 토크 저하 및 엔진 파손과 같은 결과를 가져온다. 피스톤 헤드의 온도를 낮게 하기 위하여 오일을 피스톤 헤드 하단부로 분사하는 오일 제트가 사용되는데, 본 연구에서는 오일 제트에 의한 피스톤 헤드 냉각 효과를 확인하기 위하여 템플러그를 사용하여 엔진 작동시 피스톤 헤드의 온도를 측정하였다. 템플러그는 일종의 센서로 피스톤 헤드의 온도에 따라 템플러그의 경도가 변화하여 변화된 경도를 이용하여 피스톤 헤드의 온도를 측정한다. 템플러그를 사용하여 피스톤 헤드의 최고 온도를 오일 제트가 없는 상태와 설치된 상태에서 측정하였다. 오일 제트가 설치됨에 따라 피스톤 헤드의 온도는 변화되었다. 최고 온도 부위가 중앙부위에서 전후부위로 변경되었다. 또한 피스톤 헤드 내에서 온도 편차가 감소하여 좀 더 균일한 피스톤 헤드 온도 분포를 얻을 수 있었다.

액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구 (A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature)

  • 이종구;이종민;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • 배명완
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF

Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성 (The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging)

  • 조관연;조형욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

LPG 액정분사식 대형 버스용 엔진 피스톤의 피로수명 해석과 냉각조건 평가 (Fatigue Life Analysis and Cooling Conditions Evaluation of a Piston for Large LPLi Bus Engines)

  • 최경호;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.762-772
    • /
    • 2004
  • Fatigue life of a Piston for large liquid Petroleum liquid injection(LPLi) bus engines is analyzed considering effects of cooling condition parameters : temperature of cooling water, and heat transfer coefficients at oil gallery and bottom surface of piston head. Temperature of the piston is analyzed with varying cooling conditions Stresses of the piston from two load cases of pressure loading. and pressure and thermal loading are analyzed Fatigue life under repeated peak pressure and thermal cycle is analyzed by the strain-life theory. For the two load cases, required loading cycles for engine life are defined, and loading cycles to failure and partial damages are calculated. Based on the resulting accumulated fatigue usage factors, endurance of the piston is evaluated and effects of varying cooling condition Parameters are discussed.

레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발 (Development of piston contact mechanism for radial piston pump)

  • 함영복;차재곤;김대명;공태우;윤소남;안국영;권병수
    • 유공압시스템학회논문집
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향 (Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine)

  • 이원근;엄인용
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF

프리피스톤 리니어 동력시스템의 루프소기성능 향상을 위한 유동해석 (A Flow Analysis for Improvement of the Loop Scavenging Performance of a Free Piston Linear Power System)

  • 윤재성;조형욱;이종태;이용균
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.139-144
    • /
    • 2008
  • The focus of this research is that the scavenging aspect of in-cylinder is visualized by the PIV method and its characteristic is analyzed so that the scavenging performance of the free piston hydrogen fueled engine can improve with loop scavenging. As the results, the piston of convex type shows the best scavenging performance among the presented pistons. In case of the abnormal expansion, the scavenging of area between cylinder head and cylinder wall doesn't operate well.

오일 소모 저감을 위한 역단류 2행정 프리피스톤 수소기관의 분리 윤활 특성 해석 (An Analysis on Charateristics of Separate Oiling to Reduce Oil Consumption for a 2 Stroke Free-Piston H2 Engine)

  • 변창희;백대하;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.794-799
    • /
    • 2011
  • In order to reduce the oil consumption for a 2 stroke free piston hydrogen fueled engine, the behaviors of residual lubricant oil of the cylinder wall surface were visualized and oil mass emitted into exhaust port was measured by using research engine with cross-head and eccentric crankshaft. As the results, it was shown that characteristics of residual lubricant oil such as oil thickness and distribution were remarkably different from a conventional 4 stroke engine. It was also analyzed that these tendencies relied on the configuration and installed position of the exhaust port, piston pin boss and so on.