• Title/Summary/Keyword: Piston Engine

Search Result 465, Processing Time 0.028 seconds

Analysis on the In-cylinder Flow of HIMSEN 6H21/32 Engine (HIMSEN 6H21/32 엔진 실린더 내 유동해석)

  • Yoon, Wook-Hyun;Kim, Jin-Won;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.934-939
    • /
    • 2001
  • In computational study of the flow in piston engines and the flow through moving valves, the use of moving vertices is essential for modelling flows with moving boundaries. The positions of cell vertices in such cases must be allowed to vary with time. To simulate 3-dimensional port-valve and piston-cylinder of HIMSEN 6H21/32 engine, a commercially available code, STAR-CD, was used. Changes in mesh geometry was specified by PROSTAR commands.(i.e. the Change Grid operation in the EVENTS command module.) Control of the intake flow is expected to play an important role as designers seek to obtain better fuel spray characteristics, fuel mixing and mixture preparation, combustion performance, and emissions reductions to meet national standards. As a result of analysis, velocity fields indicate the presence of a structured flow comprised of one pair of counter-rotating vortices under the intake valve during the early induction process. These flow structures remain visible for most of the intake process. As the piston moves towards BDC, these vortices develops into a larger tumbling motion that dominates the flow structure.

  • PDF

Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine (선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계)

  • Hwang, B.C.;Lee, W.H.;Bae, W.B.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.

Influence of Compression Ratio on Engine Performance in a LPG Engine Converted from a Diesel Engine (디젤엔진을 개조한 LPG엔진의 기관성능에 미치는 압축비의 영향)

  • Choi Gyeung Ho;Kim Jin Ho;Chung Yon Jong;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1178-1183
    • /
    • 2004
  • The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.

Experimental Study of Diluted Engine Oil Characteristics by Diesel Fuel (경유가 혼입된 엔진오일의 특성에 관한 실험적 연구)

  • Kim Han Goo;Park Tae Sik;Kim Chung Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oil by diesel fuel and its effects on engine components. Especially, engine oil was made to have $15\%$ fuel content. To predict existing diesel fuel content in engine oil after test was used the viscosity calibration curve. About $54\%$ percent of diesel fuel in diluted engine oil was distillated by various paths related to reciprocating motion of piston and the rest diesel fuel plays an important role for decreasing engine oil viscosity. Test results show that lowered engine ell viscosity by diesel fuel dilution become a reason of increasing engine elements wear, Therefore, this caused the quantity of blow-by gas to increase and main gallery pressure to decrease.

  • PDF

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

Developmental work of new 1.4liter gasoline engine (TX엔진 개발경과 소개)

  • 김재만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.63-67
    • /
    • 1985
  • KIA는 호평의 Bongo-9을 기본 model로 하여 도시형 다목적 leisure car인 Bongo-town을 개 발하게 되었다. TX엔진은 Bongo-town 탑재용으로 기존 1.3l TC 엔진을 volume-up 하여 전 회전 영역에서 괄목할 성능향상을 보였으며 특히 탑재차량의 특성을 고려하여 저속영역 torque를 강조하였고 부품호환성 및 생산 설비의 공용화에도 주력했다. 주요 개발내용은, 1) Cooling passage 개선 및 full siamese화 2) Piston과 connecting rod의 신설계 3) Piston 조합의 semi floating화 4) Cam shaft profile 선정 및 valve timing 변경 5) Distributor 최적진각특성 결정 6) Carburetor 개발 7) Torque limited fan and fan drive 채용 등이다. 상기내용중 중요한 몇가지를 기술하고자 한다.

  • PDF