• Title/Summary/Keyword: Piping Branch junction

Search Result 3, Processing Time 0.018 seconds

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

Limit Loads for Piping Branch Junctions with Local Wall-thinning under Internal Pressure and In-plane Bending (감육이 존재하고 내압과 굽힘하중의 복합하중을 받는 T 분기관의 한계하중)

  • Han, Jae-Jun;Lee, Kuk-Hee;Kim, Yun-Jae;Lee, Sung-Ho;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.299-304
    • /
    • 2008
  • This paper presents plastic limit loads of piping branch junctions with local wall thinning under combined pressure and in-plane bending, based on systematic three-dimensional finite element limit analyses using elastic-perfectly plastic materials. An ideal branch junction without weld or reinforcement around the intersection is considered with two locations of wall thinning; one in the run pipe, and the other in the branch pipe. Based on FE results, effects of thinning geometries on plastic limit moments are quantified and simple approximations of plastic limit loads are proposed.

  • PDF

Ghost Junction Method for Flow Network System Analyses (유동망 시스템 해석을 위한 유령 정션 기법)

  • Hong, Seok-Woo;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.626-629
    • /
    • 2008
  • Numerical predictions on flow phenomena in pipe network systems have been considered as playing an important role in both designing and operating various facilities of piping or duct systems, such as water supply, tunnel or mine ventilation, hydraulic systems of automobile or aircraft, and etc. Traditionally, coupling conditions between junction and connected branches are assumed to satisfy conservation law of mass and to share an equal pressure at junction node. However, the conventional methodology cannot reflect momentum interactions between pipes sufficiently. Thus, a new finite volume junction treatment is proposed both to reflect the interchanges of linear momentums between neighbor branches at junction and to include the effect of wall at junction in present work.

  • PDF