• Title/Summary/Keyword: Pipeline corrosion

Search Result 199, Processing Time 0.027 seconds

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

A case study of remote wireless monitoring system for stray current due to subway system (지하철 누설전류 무선 원격 감시시스템 적용 사례)

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1817-1818
    • /
    • 2006
  • In present, most of metallic structures (gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway in Seoul and Pusan.In this case, subway system make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential, amplitude of stray current, point of source of stray current and so on. In this paper, results of development about Wireless Remote Monitoring and Control System on Underground Pipeline in Stray Current Conditions are presented. And also field test data should be reporting.

  • PDF

The Corrosion Control Method for the Stray Current of Subway on Underground Gas Pipeline (지하철의 표유전류에 대한 가스배관의 전식대책법)

  • Ha, Tae-Hyun;Lee, Hyun-Goo;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.382-384
    • /
    • 2003
  • In case of parallel running with underground gas pipeline and subway, stray current of subway makes a interference on gas pipeline. This interference is one of the reason of gas pipeline corrosion. So, the high speed response rectifier was developed in order to mitigate a interference. In this paper, the field test result of proposed rectifier is presented. The effect of an alternative in stead of the forced drainage system is also presented.

  • PDF

A Study on Real-Time Corrosion Thickness Measurement Technique of Insulated Pipeline (보온재 부착 파이프라인의 부식두께 측정에 관한 연구)

  • Jang, Ji-Hun;Jo, Gyeong-Sik;Lee, Jong-O;Kim, Gi-Dong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.135-147
    • /
    • 2001
  • The wall-thickness of insulated pipelines can be easily evaluated by measuring the gamma-ray transmission intensity because this intensity is inversely proportional to the thickness of insulated pipeline. The main purpose of this study is to develop the nondestructive and filmless on-line inspection system of corrosion by measuring the wall thickness of insulated pipeline. The inspection system is constructed with radioisotope, 64 channel photo diode array detector, crawler system and data taking and operating software. The traditional off-line radiographic method carried out by exposing film cassettes can be replaced by this cost-effective on-line digital imaging method and the application will be greatly expected especially in the chemical and petrochemical industries.

  • PDF

Corrosion Rate of Buried Pipeline by Induced Alternating Current (교류가 유도되는 매설배관에서의 교류 부식속도 측정에 관한 연구)

  • Song H. S.;Kim Y. G.;Lee S. M.;Kho Y. T.;Park Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.63-72
    • /
    • 2001
  • An alternating current (AC) corrosion using coupon and electric resistance (ER) probe has been studied. Coupon coupled with ER probe were applied in terms of AC voltage from high value to low value through the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (below -850mv vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relationship could be obtained statistically, In which AC corrosion rate increased linearly with effective AC current density and its slope was 0.619 in case of coupon and 0.885 in case of ER probe.

  • PDF

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

A Basic Study on the Microbiologically Influenced Corrosion of Gas Pipeline Running Parallel with 22.9kV D/L (22.9kV 배전선로와 병행하는 가스배관의 MIC에 대한 기초 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.503-505
    • /
    • 2000
  • In general, the reason of the abnormal corrosion on oil tanks has been proved the MIC (Microbiologically Influenced Corrosion). The concern about MIC is increasing more and more now days. Therefore, this paper presents the results of basic study on the Microbiologically Influenced Corrosion of gas pipeline running parallel with 22.9kV D/L (Distribution Line).

  • PDF

A Study on Accidents of Buried Pipeline Crossing River (하천통과 매설배관의 사고사례에 대한 연구)

  • Ma, Young-Wha;Kim, Ji-Yun;Yoon, Kee-Bong;Do, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • Records of accidents for buried pipeline across the river were gathered and causes were analysed. The results are intended to be utilized as basic data for determining a reasonable criteria for the depth of buried city gas pipeline crossing the river. Accident of river-crossing buried pipeline was mainly caused by flood. Sometimes corrosion was detected at the failed location of the pipe. In order to determine reasonable and efficient depth of burial of the pipeline, hydraulic evaluation of the river and structural analysis of the pipeline are necessary. Published data for the buried natural gas pipeline incidents were also investigated and summarized. Main causes of buried natural gas pipeline incidents were external interference and corrosion. However, the two main causes of incidents showed significant difference in the proportion of the entire incident, depending on burial environment.

The Evaluation of Burst Pressure for Corroded Pipeline by Full Scale Burst Test (실배관 파열시험을 통한 부식배관의 파열압력 평가)

  • Kim, Yeong-Pyo;Baek, Jong-Hyeon;Kim, U-Sik;Go, Yeong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.203-210
    • /
    • 2002
  • The transmission pipeline industry spends many millions of dollars annually performing inline inspections, excavating sites of possible corrosion, and repairing or replacing damaged sections of pipe. New criteria fur evaluation of the integrity of corroded pipe have been developed in recent years to help in controlling these costs. These new criteria vary widely in their estimates of integrity and the most appropriate criterion fur a given pipeline is net always clear. This paper presents an overview, comparison and evaluation of acceptability criteria for corrosion deflects in pipelines. By full scale burst tests, this paper has assessed the relative accuracy of each of theses criteria in predicting burst pressure. Many of the criteria appear to be excessively conservative and indicate that deflects must be repaired when none is needed, based upon burst test data.