• Title/Summary/Keyword: Pipe impact test

Search Result 57, Processing Time 0.024 seconds

Evaluation Method of Plastic Pipe for High-Strength Water Supply (고강도 수도용 PVC관의 성능평가 연구)

  • Park, Jong-II;Lee, Chang Suck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • High-strength plastic water supply pipe evaluation method was evaluated in this study. Up to date, high strength water supply pipes that we install are mostly ductile cast iron pipes. Sometimes, a few PVC pipes are installed. Metal pipes have rust problem on the surface, causing serious damage to metal pipes and reducing the expected life span of water piping system. Nowadays, depending on technology development, some companies have improved properties of general PVC pipe performance with remarkable properties that exceed KS and ASTM standard. Here, we suggest a new method of performance evaluation for high-strength water plastic pipes.

A study on improvement of weldment design for large steel water pipes (수도용 대형 강관의 용접부 설계 개선에 관한 연구)

  • 배강열;나석주
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.50-59
    • /
    • 1991
  • Large steel water pipes in Korea are joined prevalently by bell end method and welded at inside as well as outside of the pipes with the length of leg which is same as or larger than the thickness of pipes. This results in an excessive consumption of material and labor compared with foreign counturies such as USA, so that in our recent situation of requiring a number of water pipes such consumption is very ineffective and an improvement in weld design of water pipes is urgently necessary. In this experimental study, the possibility of reducing the length of leg to 85% of the pipe thickness was investigated through observations of microstructure and cross section of weldments, the tensile test, and the impact test of the field and laboratory specimens. As the results of this study, it was revealed that water pipes which have the leg of fillet about 0.8xthickness show a good weldability, have a greater strength than the base metal and absorb the enough energy to be safe in the working condition of the pipes.

  • PDF

An Experimental Study on Vibration Control of Water Hammering in Water Pipe System (급수배관시스템의 수충격 진동제어를 위한 실험적 연구)

  • Lee, Jang-Hyun;Lee, Hyo-Haeng;Kwon, Byoung-Ha;Oh, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.453-458
    • /
    • 2008
  • Pump of high lift use to development of a technological level according as a building grow big. Water-Hammer to increase by valve of fast to closing agreeably to pipe laying to accept electronic valve, because by a damage of piping-system and the devil knows injury of vibration. Water-Hammer take a low effect to various method for solve. A New type manufacture develop and testing of pipe line to same to axis use to accumulator for water-Hammer to low effect and liner control of pressure. Impact-pressure of absorption ability and confirmation to decrease of vibration level through to preexistence manufactures and comparative test. Water-hammer and pipe vibration make low of piping system.

  • PDF

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

A Study on the Water Hammer Arrester Considering the Way of First Assessment Test (최초의 평가시험 방법을 고려한 수격흡수기의 장치에 관한 연구)

  • Yeum, Moon-Cheon;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. So, water hammer analysis is very important for limiting the damage caused to pipeline, pump and valve systems by operation conditions. On the other hand, water hammer arrester has been manufactured and used in order to minimize the damage caused by water hammering phenomenon in domestic, and it has been produced and installed as the low cost-oriented because of being no separate standard in the meanwhile. Therefore, our research team investigated about the standardization of water hammer arrester performance through the various methods, such as test methods for verification of one pipe, assuming the occurrence of water hammer in a water-based fire extinguishing system, separated for opening impact pressure and shut off impact pressure and for a branch pipe in order to make guideline for water hammer arrester performance. And finally, verified the performance of the water hammer pressure as the simple mechanical way using the U-shaped pipe and a test weight, so KFI standards for the water hammer arrester could be established.

Finite Element Analysis of Pipe Whip Restraint Behavior Under Jet Thrust Forces (유체 분사 추진력을 받는 배관 휩 구속장치 거동에 관한 유한요소해석)

  • Sugoong Koh;Lee, Young-Shin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.353-360
    • /
    • 1993
  • Many types of pipe whip restraints are installed to protect the structural components from the anticipated pipe whip phenomena of high energy lines in nuclear power plants. It is necessary to investigate these phenomena accurately in order to design the pipe whip restraints properly and/or to evaluate the acceptability of the pipe whip restraint design. Various research programs have been conducted in many countries to develop analytical methods and to verify the validity of the methods. In this study, various types of finite elements in ANSYS[1], the general purpose finite element computer program, was used to simulate the postulated pipe whips to obtain impact loads and the calculated results were compared with the specific experimental results from the sample pipe whip test for the U-shaped pipe whip restraints. Some calculational models, having the gap element or the spring element between the pipe whip restraint and the pipe line, give reasonably good transient responses of the restraint forces compared with the experimental results, and could be useful in evaluating the acceptability of the pipe whip restraint design.

  • PDF

The Optimum Control Study for Improving Efficiency of the Small Hydropower Generation in Water Pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with 00 hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam (튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.313-325
    • /
    • 2001
  • Tubular bridge rail was developed to restrain and redirect a 14ton van-type truck. The developed bridge rail permits better visibility than concrete safety-shape bridge rail, and it has better structural adequacy than the existing steel and aluminum bridge rails in Korea. The new bridge rail consists of a tubular thrie beam(TTB) rail and a steel guard rail, which are connected to composite posts. The TTB shape provides both better containment of diverse bumper heights and more tight fit between the ends of bridge rail and roadside guardrails than the existing bridge rail sections currently used in Korea. Making composite post by filling concrete inside the steel pipe of the same size as are used for the roadside guardrail post was found to be more efficient in increasing the stiffness and ultimate strength than simply increasing the size of the steel pipe. The system was crash-tested for the impact condition of 14ton-80km/h-$15^{\circ}$, and it satisfied all evaluation criteria set forth in NCHRP Report 350 for a Test Level 4 safety appurtenance. Acceptable performances were obtained in computer simulations for the impact condition of S2.

  • PDF