• 제목/요약/키워드: Pipe failure

검색결과 352건 처리시간 0.025초

자동차 에어컨 냉매 가스 누설에 대한 고장사례 고찰 (A Study of Failure Examples for Refrigerant Gas Leakage in Automotive Air Conditioner System)

  • 이일권;국창호;문학훈;유창배
    • 한국가스학회지
    • /
    • 제20권2호
    • /
    • pp.10-15
    • /
    • 2016
  • 이 논문의 목적은 자동차 에어컨 가스 누설에 관련된 고장사례를 분석하고 고찰한 것이다. 첫 번째 사례는 냉매가 누설된 상태에서 에어컨 컴프레서가 계속 작동되었다. 이로 인해 에어컨 컴프레서 내부의 피스톤이 윤활부족으로 인해 피스톤이 부분적으로 에어컨 컴프레서 내부의 실린더에 소착되는 현상이 발생하였다. 이것이 엔진작동 중 부하를 증대시켜 엔진의 회전수 변동과 함께 엔진의 작동이 정지되는 현상이 발생된 것으로 확인되었다. 두 번째 사례는 에어컨 라인과 관련 시스템을 확인한 결과 에어컨 컴프레서에서 뒤쪽으로 가는 컨덴서 고압파이프에서 미세한 균열에 의해 에어컨 냉매 가스가 누설되는 것을 확인하였다. 세 번째 사례는 에어컨 컨덴서 핀 부에서 육안으로 확인하기 어려운 미세한 크랙에 의해 컨덴서 내부 안쪽에서 에어컨 가스가 미세하게 누설되는 것을 확인하였다. 따라서, 에어컨 시스템은 에어컨 냉매가스에 의해 자동차의 실내의 온도를 낮춰 공기조화를 하는 시스템이므로 최적의 상태를 유지할 수 있도록 철저한 관리를 하도록 하여야 한다.

지역난방 냉각수 배관의 용접부 파손 분석 (Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System)

  • 정준철;김우철;김경민;손홍균;김정구;이수열;김희산
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용 (Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.30-39
    • /
    • 2022
  • 원자력발전소 주요기기의 건전성 유지는 구조물의 안전성과 관련하여 매우 중요한 문제로 인식되고 있으며 배관시스템의 건전성은 원자력발전소의 안전과 관련된 매우 중요한 문제이다. 지진하중으로 인한 배관시스템의 실제 파괴모드는 피로균열에 의한 누수이며 구조적인 손상 메커니즘은 소성변형을 발생할 수 있는 큰 상대변위로 인한 저주기 피로이다. 이 연구에서는 원자력발전소의 배관시스템에서 3인치의 강재 직관과 강재 배관 Tee로 구성된 시험체에 대하여 다양한 크기의 일정한 진폭에 대하여 면내반복가력실험을 수행하였다. 지진하중으로 인한 배관시스템에서 발생하는 상대변위를 고려하기 위하여 하중진폭을 증가시켰으며, 강재 배관 Tee의 한계상태인 피로균열에 의한 누수가 발생할 때까지 수행하였다. 힘과 변위의 관계에 대하여 손상모델에 기반을 둔 손상지수를 이용하여 한계상태를 표현하였다. 그 결과 손상지수를 이용하여 강재 배관 Tee의 한계상태를 정량적으로 표현할 수 있음을 확인할 수 있었다.

검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가 (Reliability Updates of Driven Piles Using Proof Pile Load Test Results)

  • 박재현;김동욱;곽기석;정문경;김준영;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

Fatigue Evaluation for the Socket Weld in Nuclear Power Plants

  • Choi, Young Hwan;Choi, Sun Yeong;Huh, Nam Soo
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.216-221
    • /
    • 2004
  • The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. III requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. (1) The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. (2) The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. (3) 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. (4) The reduction of the weld leg size from $1.09*t_1$ to $0.75*t_1$ can affect severely on the socket weld integrity.

아크유도형 침부 접지봉의 특성 연구 (A Study on the Characteristics of an Arc-Inducing Driven Rod with Needles)

  • 박중신;정종욱;곽희로
    • 조명전기설비학회논문지
    • /
    • 제14권1호
    • /
    • pp.118-123
    • /
    • 2000
  • 본 논문에서는 상용주파 고장전류 및 뇌격전류를 모두 효과적으로 대지로 방류할 수 있는 새로운 형태의 접지 봉인 아크유도형 침부 접지봉을 고안하여 특성올 연구, 분석하였다. 아크유도형 침부 접지봉의 구조는 일반 접지 용의 표면에 침을 부착한 후 동파이프에 넣었다. 이 고안된 접지봉이 배전선로의 피뢰기 접지봉에 사용될 경우의 특성올 검토한 결과, 침과 동파이프 사이에서 아크가 발생하여 전기에너지를 효과적으로 소모함으로써 피뢰기 1차측 전압이 감소됨을 확인하였다.

  • PDF

석유화학 플랜트의 배관계 설계기준에 대한 연구 (A Study on Design Criteria of Piping System in Petrochemical Plant)

  • 민선규;최명진
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.192-199
    • /
    • 2002
  • Largely, there are three kinds of the design criteria of piping system in petrochemical plant. The first is on the pipe thickness in accordance with the design pressure of piping system. The second is on the static state evaluation by thermal growth and the other is on the dynamic evaluation by piping vibration. According to the ASME B31.3 code, the internal pressure design thickness fur straight pipe shall be calculated as a code formula. And the static design by thermal displacement is defined 7000 cycles of fatigue life in operating the piping system with a design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to the static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

발전용 고온 배관의 점검 및 실시간 변위감시 기술 (Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant)

  • 현중섭;허재실;조선영;허정열;이성기
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1177-1186
    • /
    • 2009
  • High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of "Y" thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

원전 1차 측 배관재질의 열화에 따른 응력부식균열 발생 비교 실험 연구 (Experimental Studies on Comparison of Stress Corrosion Cracking Generation Due to Pipe Material Degradation in the Primary Stage of the Nuclear Power Plant)

  • 박광진;이규영;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.108-113
    • /
    • 2007
  • In this report, stress corrosion cracking generation due to pipe material degradation in the primary stage of the nuclear power plant was investigated. Firstly, after artificially degrading the CF8A steel during 2, 4, and 6 months in actual temperature, $400^{\circ}C,$ assessed corrosion susceptibility of the degraded material following ASTM G5 standard. And next, the S.C.C. tests for the degraded material were conducted under the condition of $60^{\circ}C,$ 2wt.% H2BO3+Li70H solution, 0.8 oy. From the results, Corrosion rates linearly increased with degradation period and solution temperature increase. And both the raw material and the degraded materials were not failed in the S.C.C. test condition. In spite of long time test (about 3,900 hrs) under S.C.C. condition, surface pits or surface corrosion by the electro chemical reaction were not observed. And also, even though the nondestructive DCPD and ACPD methods were applied to on-line monitor the S.C.C. failure processes it was impossible because the surface pits and cracks were not generated.

  • PDF

실내요소실험에 의한 압축형 앵커의 정착부 보강효과 분석 (Analysis on Reinforcing Effect at Fixed Part of Compression Anchor by Laboratory Element Tests)

  • 홍석우
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.49-55
    • /
    • 2002
  • The compression anchor is characterized by decrement of progressive failure, simple site work, economy and durability compared with tension anchor. In this paper, compression anchor is analysed through the laboratory element tests. The formula to be estimate the grout strength in fixed part of compression anchor and the effective reinforcement method for several types of soil were suggested. The following conclusions were made from this study : (1) A formula, which is able to calculate the grout strength in the fixed part of the compression anchor, is suggested. (2) The strength increment ratios( $R_{si}$) are 100%, 132%, 147%, 217% according to the reinforcement method of grout. The reinforcement method is Non, Outside spiral, Inside-Outside spiral, Steel pipe, respectively. (3) The strength increment ratios( $R_{si}$) by reinforcing can be 8.23 times the strength increment effect according to the reinforcement types and ground confining pressure. (4) The steel pipe reinforcement is most effective in decomposed soil while, in the case of hard rock ground, high confining pressure is exerted on the grout, so there is no need to use reinforcements.