• Title/Summary/Keyword: Pipe burst detection

Search Result 6, Processing Time 0.022 seconds

Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline (도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가)

  • Eunher Shin;Gimoon Jeong;Kyoungpil Kim;Taeho Choi;Seon-ha Chae;Yong Woo Cho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

Data-driven event detection method for efficient management and recovery of water distribution system man-made disasters (상수도관망 재난관리 및 복구를 위한 데이터기반 이상탐지 방법론 개발)

  • Jung, Donghwi;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.703-711
    • /
    • 2018
  • Water distribution system (WDS) pipe bursts are caused from excessive pressure, pipe aging, and ground shift from temperature change and earthquake. Prompt detection of and response to the failure event help prevent large-scale service interruption and catastrophic sinkhole generation. To that end, this study proposes a improved Western Electric Company (WECO) method to improve the detection effectiveness and efficiency of the original WECO method. The original WECO method is an univariate Statistical Process Control (SPC) technique used for identifying any non-random patterns in system output data. The improved WECO method multiples a threshold modifier (w) to each threshold of WECO sub-rules in order to control the sensitivity of anomaly detection in a water distribution network of interest. The Austin network was used to demonstrated the proposed method in which normal random and abnormal pipe flow data were generated. The best w value was identified from a sensitivity analysis, and the impact of measurement frequency (dt = 5, 10, 15 min etc.) was also investigated. The proposed method was compared to the original WECO method with respect to detection probability, false alarm rate, and averaged detection time. Finally, this study provides a set of guidelines on the use of the WECO method for real-life WDS pipe burst detection.

Assessment of Pipe Wall Loss Using Guided Wave Testing (유도초음파기술을 이용한 배관 감육 평가)

  • Joo, Kyung-Mun;Jin, Seuk-Hong;Moon, Yong-Sig
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion.

Leakage Detection of Water Distribution System using Adaptive Kalman Filter (적응 칼만필터를 이용한 상수관망의 누수감시 기법)

  • Kim, Seong-Won;Choi, Doo Yong;Bae, Cheol-Ho;Kim, Juhwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.969-976
    • /
    • 2013
  • Leakage in water distribution system causes social and economic losses by direct water loss into the ground, and additional energy demand for water supply. This research suggests a leak detection model of using adaptive Kalman filtering on real-time data of pipe flow. The proposed model takes into account hourly and daily variations of water demand. In addition, the model's prediction accuracy is improved by automatically calibrating the covariance of noise through innovation sequence. The adaptive Kalman filtering shows more accurate result than the existing Kalman method for virtual sine flow data. Then, the model is applied to data from two real district metered area in JE city. It is expected that the proposed model can be an effective tool for operating water supply system through detecting burst leakage and abnormal water usage.

Development of a pipe burst detection model using large consumer's smart water meter and pressure data (대수용가 스마트미터와 수압 데이터를 이용한 소블록 내 관 파손사고 감지모델 개발)

  • Kyoung Pil Kim;Wan Sik Yu;Shin Uk Kang;Doo Yong Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.521-521
    • /
    • 2023
  • 지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.

  • PDF

Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network (상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교)

  • Jang, Hyewoon;Jung, Donghwi;Jun, Sanghoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1295-1303
    • /
    • 2022
  • As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model's prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.