• 제목/요약/키워드: Pipe Specimen

검색결과 129건 처리시간 0.021초

실배관 시험편의 균열 길이 측정에 관한 연구 (A Study on the Measurement of the Crack Length for the Real Scale Pipe Specimen)

  • 박재실;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.397-402
    • /
    • 2003
  • Fracture resistance curves for concerned materials are required in order to perform elastic-plastic fracture mechanical analyses. Fracture resistance curve is built with J-integral values and crack extension values. The objective of this paper is to apply the load ratio method to the measurement of the crack length for the real scale pipe specimen. For these, the fracture test using the real scale pipe specimen and finite element analyses were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method and the load ratio method was used to measure the crack extension and the length for the real scale pipe test. Finite element analyses about the compliance of the pipe specimen were executed for applying the load ratio method according to the crack length.

  • PDF

실배관 파괴특성 평가에 관한 연구 (I) (A Study on the Evaluation of the Pipe Fracture Characteristic (I))

  • 박재실;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.345-350
    • /
    • 2001
  • In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. 1T-CT specimen was used to obtain fracture resistance curves. But the fracture resistance curve by the 1T-CT specimen was very conservative to evaluate the integrity of the structure. And fracture resistance curve was affected by the specimen geometry and crack plane orientation. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the 1T-CT specimen and to provide the additional safety margin. For these, the fracture tests using the real pipe specimen and standard 1T-CT specimen test were performed. 4-point bending jig was manufactured for pipe test and direct current potential drop method was used to measure the crack extension and length for pipe test. From the pipe and the 1T-CT specimen test results, it was observed that the J-integral of the 1T-CT specimen test at the crack initiation point was very small compare to that of the pipe specimen test.

  • PDF

실배관 파괴특성 평가에 관한 연구 (A Study on the Evaluation of the Pipe Fracture Characteristic)

  • 박재실;김영진;석창성
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.107-114
    • /
    • 2005
  • In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known first. The standard CT specimen was used to obtain the fracture resistance curves of a piping system. However, it is known that the fracture resistance curve by the standard CT specimen is very conservative to evaluate the integrity of a structure. Also the fracture resistance curve is effected by the specimen geometry and the dimensions because of the constraint effect. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and the standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. Also finite element analyses were performed with a CT specimen and a pipe in order to prove the additional safety margin. From the result of tests and analyses of the pipe and the standard CT specimen, it was observed that the fracture analysis with the standard CT specimen is conservative and the additional safety margin was proved.

표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측 (Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen)

  • 박홍선;허용;구재민;석창성;박재실
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

수정된 하중비법을 이용한 배관 시험편의 균열 길이 계산 (Calculation of the Crack Length for a Pipe Specimen using the Modified Load Ratio Method)

  • 최정훈;구재민;석창성;허용;박재실
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1375-1382
    • /
    • 2009
  • The objective of this paper is to apply the load ratio method to the measurement of the crack length of the real scale pipe specimen. The load ratio method was modified and finite element analyses were performed to derive the relationship between the normalized compliance and the normalized crack length for the pipe specimen. In order to measure the crack length, the direct current potential drop method and the modified load ratio method were applied to the pipe test. The applicability of the modified load ratio method was confirmed by comparing the calculated crack length with the measured crack length from the pipe experiment.

반복하중 하의 엘보우 변형 및 손상 특성 평가를 위한 모사시험 방법 제안 (Proposal of a Simulated Test Method for the Evaluation of Deformation and Failure Characteristics of Pipe Elbows under Cyclic Loads)

  • 김진원;이대영;박흥배
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2020
  • This study proposed a simulated test method using ring specimen to evaluate the deformation and failure characteristics of pipe elbows under a large amplitude cyclic load. The validity of the test method was demonstrated by finite element (FE) analysis of pipe elbow and ring specimen under cyclic loads. The results showed that the proposed test method adequately simulates the distribution of circumferential strain at crown of pipe elbows where cracks occur under cyclic loads and presents the cyclic hardening behavior of pipe elbows. The parametric FE analysis showed that consistent simulated test results could be obtained when the test section of the ring specimen is longer than 1/2 of the inner diameter of the ring specimen and the radius of the inner loading jig is less than 1/4 of the inner diameter of the specimen.

이미지 프로세싱을 이용한 실배관 시험편의 균열 길이 측정에 관한 연구 (A Study on the Measurement of Crack Length of Pipe Specimen Using Image Processing)

  • 강민성;구재민;석창성;허용
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.7-11
    • /
    • 2010
  • Difficulties associated with full-scale pipe tests are rather obvious. That is, it is not only difficult to perform them but also very expensive and it requires lots of experience. And the process of the fracture test for the pipe specimen is very difficult and complicated. Because the pipe specimen, the test jig and the test equipment are very large and heavy, it requires lots of costs and times. In this study, to easily perform the fracture toughness test for a pipe specimen, load line displacement data was obtained using the image processing method.

대형배관의 Curved CT 시편을 이용한 파괴저항특성평가에 관한 연구 (A Study on the Evaluation of Fracture Resistance Characteristics of Large Pipe by using the Curved CT Specimen)

  • 김익현;신인환;박건태;홍석우;박승순;윤승현;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.623-626
    • /
    • 2014
  • The LBB (Leak Before Break) concept is based on evaluating the fracture toughness. NUREG 1061, Vol.3 announced that the specimen for evaluating fracture resistance needs to have same thickness or thicker than pipe. Therefore, it is difficult to collect specimen from pipe which has same thickness as a pipe. So, ASTM standard suggested the use of standard specimen with 1 inch thickness. However, it has been known that an application of LBB by test results of standard specimen is conservative compare with that by real pipe. In this study, to supplement such conservatism, the evaluation of fracture resistance characteristics was performed with curved CT specimen, which has same thickness and curvature as a pipe. In addition, fracture resistance characteristics of curved CT specimen were compared with those of CT specimen. For this, shape factor F, hpl and g were obtained from FEM analysis using the limit load method.

Notched Ring Test 저속균열 시험편의 응력확대계수정식화 (Development of Stress Intensity Factor Equation for the Notched Ring Test (NRT) Specimen)

  • 표수호;최선웅
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.87-92
    • /
    • 2014
  • The Notched Ring Test(NRT) has proven to be very useful in determining the slow crack growth behavior of polyethylene pressure pipes. In particular, the test is simple and an order of magnitude shorter in experimental times as compared to the currently used Notched Pipe Test(NPT), which makes this method attractive for use as the accelerated slow crack growth test. In addition, since the NRT specimen is taken directly from the pipe, having maintained the cross-section, processing induced artifacts that would affect the slow crack growth behavior are not altered. This makes the direct comparison to the slow crack growth specimen in pipe from more meaningful. In this study, for comparison with other available slow crack growth methods, including the NPT, the stress intensity factor equation for NRT specimen was developed and demonstrated of its accuracy within 3% of that obtained from the finite element analysis. The equation was derived using a flexure formula of curved beam bending along with numerically determined geometric factors. The accuracy of the equation was successfully tested on 63, 110, 140, 160, 250, and 400 mm nominal pipe diameters, with crack depth ranging from 15 % to 45 % of the pipe wall thickness, and for standard dimensional ratio(SDR) of 9, 11, and 13.6. Using this equation the slow crack results from 110SDR11 NRT specimen were compared to that from the NPT specimen, which demonstrated that the NRT specimen was equivalent to the NPT specimen in creating the slow crack, however in much shorter experimental times.

흰 광폭평판 시험을 이용한 원자력 배관의 파괴거동예측 (Prediction of Failure Behavior for Nuclear Piping Using Curved Wide-Plate Test)

  • 허남수;김윤재;최재붕;김영진;임혁순;정대율
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.352-361
    • /
    • 2004
  • One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from the C(T) specimen. It is shown that the J-resistance curve form the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed 3-D FE analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.