• Title/Summary/Keyword: Pipe Prover

Search Result 4, Processing Time 0.019 seconds

A Study on the Measurement Uncertainty of Pipe Prover (파이프 프루버의 측정불확도에 관한 연구)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy (경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipeline (관로를 통하여 수송되는 원통형 캡슐의 거동에 대하여 캡슐밀도의 균일성이 미치는 영향)

  • 이경훈
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.97-105
    • /
    • 1993
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect of capsule density variation in the axial direction was studied both experimentally and anaytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions, In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the stability index. The experiments conducted prover that the stability index is a valid criterion for explaining and correlating data on the capsule motion and the capsule density uniformity.

  • PDF

Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility (액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.