• 제목/요약/키워드: Pipe Flow Analysis

검색결과 638건 처리시간 0.033초

상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발 (The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제40권4호
    • /
    • pp.325-334
    • /
    • 2007
  • 본 연구에서는 점진적인 유량 및 압력이 변화하는 상수관망에서 Rigid Water Column Theory를 이용하여 정상모형의 확장기간 모의해석보다 정확하고 수충격 해석보다는 계산비용 및 노력 측면에서 효율적으로 장시간 부정류 해석 모형을 개발하였다. 개발된 모형을 이용하여 실제관망에 대하여 24 시간 열 수요량을 고려한 부정류 해석 및 밸브폐쇄로 인한 수충격해석 모의에 적용하였고 해석 결과는 다음과 같다. 24 시간 일변화 모의의 경우에 수요량이 증가할 경우 모든 관로에서 압력감소가 나타났으며 수요량이 감소할 경우 압력증가가 나타났다. 그리고 일 수요량의 변화에 따라 나타난 절점에서의 유량 및 압력 변화폭은 각 절점마다 다르고 수요량과 유량의 변화양상이 반대로 나타나는 관로도 발생하고 있으며 KYPIPE2의 결과와 본 모형의 유량 및 압력차이도 발생하고 있어 상수관망의 동역학적 해석의 필요성이 대두되었다. 밸브폐쇄로 인한 수충격모의에 본 모형이 적용되었을 때 본 모형은 유체의 압축성을 무시함으로 인해 밸브 완전 폐쇄와 동시에 압력과 유량의 변화가 전 관망에 발생하였고 수충격모형은 유체의 탄성으로 인해 발생된 압력파의 도달시간이 필요함으로 압력과 유량변화가 지체되어 나타났으나 전체적인 변화양상 및 변화폭의 크기 등은 유사한 경향을 나타내어 본 모형의 적용성을 입증하였다. 본 연구에서 개발된 프로그램은 장기간 점진적인 관로 부정류를 비교적 정확하게 해석할 수 있을 것으로 판단되며 이를 이용하여 관로내 오염물의 확산해석, 수요량을 고려한 절점에서의 압력제어 및 누수저감, 장기간 관로내의 유량 및 압력 변화를 고려한 관망관리 등의 분야에서 효율적으로 이용될 수 있을 것으로 기대되었다.

공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 -)

  • 정광섭;김민수;김용찬;박경근;박병윤;조금남
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생 (Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice)

  • 황경모
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

양방향 삼중편심 버터플라이 밸브 개발 (Development of Bi-directional Triple-eccentric Type Butterfly Valve)

  • 김수영;이동명;배정훈;신성철;설창호
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.545-551
    • /
    • 2009
  • In naval architecture and offshore engineering, the development and a broad use has been achieved in the field of flow control valves for pipe system. Butterfly valves are also widely used for flow control, but there are not many studies for triple-eccentric butterfly valves. Moreover, if the fluid of pipeline flows in the bi-direction then it makes more complicate to adapt triple-eccentric butterfly valves to flow control. In this study, we are trying to develop a bi-directional triple-eccentric butterfly valve through sealing mechanism and stem design study. Digital mockup using 3D CAD was constructed for shape interference check and structural analysis was conducted for structural safety. Also we performed leakage test to check out the durability of the bi-directional pressure for the developed valve.

디젤엔진 배출가스의 질소산화물 저감을 위한 Solid SCR용 가스분사 시스템의 전산유체해석 연구 (CFD Analysis on Gas Injection System of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine)

  • 이호열;윤천석;김홍석
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.73-83
    • /
    • 2014
  • CFD(computational fluid dynamics) model is developed to simulate direct injection of ammonia gas phase from ammonia transporting materials into the SCR catalyst in the exhaust pipe of the engine with solid SCR. Configurations of one-hole and four-hole nozzle, circumferential type, porous tube type, and the effect of mixer configurations which commonly used in liquid injection of AdBlue are considered for complex geometries. Mal-distribution index related to concentration of ammonia gas, flow uniformity index related to velocity distribution, and pressure drop related to flow resistance are compared for different configurations of complex geometries at the front section of SCR catalyst. These results are used to design the injection system of ammonia gas phase for solid SCR of target vehicle.

4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구 (제1보) (Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines (First Paper))

  • 윤건식;우석근;서문진;신승한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1260-1271
    • /
    • 2001
  • The simulation program which predicts the gas behavior in a spark ignition engine has been developed and verified by the comparison with the experimental results foy the MPI engine, naturally aspirated and turbochared engines with a carburettor. First paper describes the calculations of the behavior of gas in the intake and exhaust system. The generalized method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyse the pipe flow The constant-Pressure model was applied for the analysis of the flow through engine valved, and the constant-pressure perfect-mixing model was applied for the flow at manifold junction. The concept of the sudden area change was used for the muffler and catalytic convertor. Fer the plenum chamber in an MPI engine, constant-pressure model and constant-volume model were both examined. Through the comparison of predicted results with experiments, the simulation program was verified by showing good prediction of the behavior of IC engine qualitatively and quantitatively under wide range of operating conditions.

  • PDF

3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구 (An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply)

  • 이상훈;박종우;임경빈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

이동경계 수치해법을 이용한 탄성평판 및 탄성관 모델내의 맥동유동 해석 (Analysis of Pulsating Flow in Elastic Parallel Plates and an Elastic Pipe Model Using Moving Boundary Algorithm)

  • 박형규;김찬중;이종선
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.425-434
    • /
    • 2005
  • In order to analyze pulsating flows in elastic blood vessels, a method based on the ALE concept and finite volume method was reformed and modulated to include wall motion of elastic vessels and impedance phase angle(phase difference between wall motion and blood flow). Our study indicated wall shear rates(WSR) were significantly influenced by the wall motion and the impedance phase angle. For larger wall motion more than $5{\%},$ the computed WSR started to deviate from the results of the perturbation theory that assumed smaller wall motion. The study showed that oscillatory shear index increased as the impedance phase angle became more negative like $-70{\circ}\;or\;-80{\circ}$ due to reduced mean WSR and increased amplitude of WSR. This result indicated that hypertensive patients are more vulnerable to atherosclerosis than normal persons because of the role of more negative impedance phase angles usually observed in these patients.

Thermal study of the emergency draining tank of molten salt reactor

  • C. Peniguel
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.793-802
    • /
    • 2024
  • In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.

STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화 (Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe)

  • 이형근;방경식
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.