• Title/Summary/Keyword: Pipe Failure Test

Search Result 106, Processing Time 0.027 seconds

Effects of Thinning Length on Failure Mode of Local Wall Thinned Pipe (감육 배관의 손상모드에 미치는 감육부 길이의 영향)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho;Kang, Tai-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.357-362
    • /
    • 2001
  • The pipe fracture tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, in order to understand failure behavior of thinned pipe. Pipe specimens were subjected to monotonic bending moment, using 4-points loading system, under internally pressurized condition. From the results of experiment, the failure mode, load carrying capacity, and deformability of local wall thinning pipe were investigated. Failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with length of thinned area was determined by stress type appled to thinning region and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

  • PDF

Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests (감육배관 손상시험 결과를 이용한 국부손상기준 검증)

  • Kim, Jin-Weon;Lee, Sung-Ho;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1393-1400
    • /
    • 2009
  • The objective of this study is to validate local failure criteria, which were proposed based on the notched-bar specimen tests combining with finite element (FE) simulations, using the results of real-scale pipe failure tests. This study conducted burst test using wall-thinned pipe specimens, which were made of 4 inch Sch.80 ASTM A106 Gr.B carbon steel pipe, under simple internal pressure at ambient temperature and performed associated FE simulations. Failure pressures were estimated by applying the failure criteria to the results of FE simulations and were compared with experimental failure pressures. It showed that the local stress based criterion, given as true ultimate tensile stress of material, accurately estimated the failure pressure of wall-thinned pipe specimens. However, the local strain based criterion, which is fracture strain of material as a function of stress tri-axiality, could not predict the failure pressure. It was confirmed that the local stress based criterion is reliably applicable to estimation of failure pressure of local wall-thinned piping components.

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Proposal of a Simulated Test Method for the Evaluation of Deformation and Failure Characteristics of Pipe Elbows under Cyclic Loads (반복하중 하의 엘보우 변형 및 손상 특성 평가를 위한 모사시험 방법 제안)

  • Kim, Jin Weon;Lee, Dae Young;Park, Heung Bae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study proposed a simulated test method using ring specimen to evaluate the deformation and failure characteristics of pipe elbows under a large amplitude cyclic load. The validity of the test method was demonstrated by finite element (FE) analysis of pipe elbow and ring specimen under cyclic loads. The results showed that the proposed test method adequately simulates the distribution of circumferential strain at crown of pipe elbows where cracks occur under cyclic loads and presents the cyclic hardening behavior of pipe elbows. The parametric FE analysis showed that consistent simulated test results could be obtained when the test section of the ring specimen is longer than 1/2 of the inner diameter of the ring specimen and the radius of the inner loading jig is less than 1/4 of the inner diameter of the specimen.

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning (원주방향 노치형 감육부를 가진 배관의 손상거동 평가)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

Analysis of Vibration Characteristics of Fuel Pipe and Test Jig for Vehicle (차량 연료공급용 파이프 및 시험용 지그의 진동특성 해석)

  • Son, In-Soo;Kim, Myung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.315-321
    • /
    • 2021
  • In this study, the natural frequency analysis of the fuel pipe and vibration test jig was performed as a basic study to determine the vibration characteristics of the vehicle's fuel pipe and the stability analysis of fatigue failure of the pipe. The natural frequencies of the fuel pipe and the fuel pipe with the test jig were calculated and the results were compared. As a result of the analysis, it was found that the natural frequency of the fuel pipe and the natural frequency of the test jig differed about 7 times, so that the vibration of the test jig did not affect the vibration of the fuel pipe. In addition, as a result of the natural frequency analysis of the fuel pipe itself and the pipe with the test jig attached, the maximum error is less than about 1%. In the future, it was suggested that the analysis of the design changed fuel pipe may be performed without a test jig.

The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline (가스배관 용접부위 부식에 대한 파열압력 평가)

  • Kim, Young-Pyo;Kim, Woo-Sik;Lee, Young-Kwang;Oh, Kyu-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.222-227
    • /
    • 2004
  • The failure assessment for corroded pipeline has been considered with the full scale burst test and the finite element analysis. The burst tests were conducted on 762 mm diameter, 17.5 mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect on the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF