• 제목/요약/키워드: Pipe Bend

검색결과 69건 처리시간 0.022초

곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe)

  • 이동훈;김희동;뢰척구준명
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

심해저 파이프라인과 굽힘 제한 장치의 다중물체 접촉 해석을 통한 구조 최적설계 (Multi-Body Contact Analysis and Structural Design Optimization of Bend Restrictors for Subsea Pipelines)

  • 노정민;하윤도
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.289-296
    • /
    • 2018
  • The offshore subsea platforms are connected to subsea pipelines to transport gas/oil from wells. The pipe is a multilayered structure of polymer and steel for compensating both flexibility and strength. The pipe also requires reinforcement structures to endure the extreme environmental conditions. A vertebrae structure of bend restrictors is one of the reinforcement structures installed to protect the subsea pipe from excessive bending deformations. In this study, structural behaviors of the subsea pipeline with bend restrictors are investigated by the multi-body contact analysis in Abaqus 6.14-2. Contact forces of each bend restrictor extracted from the multi-body contact analysis can be boundary conditions for topology design optimization in Altair Hyperworks 13.0 Hypermesh-Optistruct. Multiple design constraints are considered to obtain a manufacturable design with efficient material usage. Through the multi-body contact analysis with optimized bend restrictors, it is confirmed that the bending performance of the optimized design is enhanced.

소형위성 발사체용 액체 추진제 곡관 배관 설계 및 유동 성능 해석 (Design and Evaluation of Vaned Pipe Bends of Liquid Propellant for Satellite Launch Vehicles)

  • 이희준;한상엽;하성업;김영목
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.53-60
    • /
    • 2005
  • 소형위성 발사체 추진제 공급계 배관의 구부러짐으로 인하여 배관내부의 추진제 유동은 불균일하며 이는 터보펌프 전단의 블레이드의 파괴 및 후단의 가압된 추진제의 불안정성을 야기시킨다. 따라서 추진제의 효율적인 공급을 위하여 vane이 장착된 곡관 배관이 필요하며 내부에서의 유동장을 수치해석으로 규명하여 그 문제점을 해결할 수 있는 지 연구하였다. 따라서, 본 연구에서는 각각 90도와 45도로 구부러진 3인치 산화제 배관과 2.5인치 연료 배관의 구부러진 부분에는 $0\sim3$개의 vane을 등 간격으로 설치하였다. 3차원 Navier-Stokes 방정식을 풀기 위하여 상용코드를 이용하였으며, 곡관 배관 설계를 평가하기 위하여 각 90, 45도의 vane이 설치되지 않은 곡관과 $1\sim3$개의 vane이 장착된 곡관을 비교하였다. vane의 개수에 의한 배관 설계의 영향을 알아보기 위하여 90, 45도의 곡관에 vane이 0, 1, 2, 3개가 등 간격으로 장착이 되었을 때의 결과를 비교하였다. 배관내의 유동 균일성과 차압을 알기 위하여 속도크기와 압력분포를 계산하였다. vane이 많을수록 곡관의 각도가 클수록 곡관을 지난 유동은 더 균일해졌으나 배관 차압은 더 증가하였다.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

내압과 굽힘하중을 받는 가스배관의 변형특성에 관한 연구 (A Study on the Deformation Characteristics of Gas Pipeline under Internal Pressure and In-Plane Bending Load)

  • 장윤찬;김익중;김철만;전법규;장성진;김영표
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.50-57
    • /
    • 2019
  • This paper investigates deformation characteristics of gas pipeline using the in-plane bending experiment and finite element analysis of a pipe bend. The effect of the bending angle and internal pressure on the deformation characteristics is analyzed. The pipe bend used in this study is API 5L X65 (out diameter: 20 inch) material with the thickness of 11.9 mm. The maximum load, displacement at maximum load, angle and local strain of 90° pipe bend are obtained from the in-plane bending experiment. Comparison between FE results and experimental data shows overall good agreements. In addition, the deformation characteristics of 22.5° and 45° pipe bend are calculated using the finite element analysis. As a result, the effect of the bend angle on the deformation characteristics is discussed.

분지관을 전파하는 약한 충격파에 관한 수치해석적 연구 (Study of the Shock Wave Propagating through a Branched Pipe Bend)

  • 김현섭;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.165-168
    • /
    • 2002
  • This paper describes the dynamics of the weak shock wave propagating inside some kinds of branched pipe bends. Computations are carried out by solving the two-dimensional, compressible, unsteady Euler Equations. The second-order TVD(Total Variation Diminishing) scheme is employed to discretize the governing equations. For computations, two types of branched pipe($90^{\circ}$ branch,$45^{\circ}$ branch) with a diameter of D are used. The incident normal shock wave is assumed at D upstream of the pipe bend entrance, and its Mach number is changed between 1.1 and 2.4. The flow fields are numerically visualized by using the pressure contours and computed schlieren images. The comparison with the experimental data performed for the purpose of validation of computational work. Reflection and diffraction of the propagating shock wave are clarified. The present computations predicted the experimented flow field with a good accuracy.

  • PDF

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

A Study on Proper Location of Welding Defect in Three Point Bend Testing with MDPE Pipe

  • Lai, Huan Sheng;Yoon, Kee Bong;Kil, Seong Hee
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Welding defects affect the performance of welded pipe joints. In this study, a three point bend test of welded steel and medium density polyethylene (MDPE) pipe joints with defects of various defect locations and defect materials was studied using the finite element method. The defect was assumed to be located at 12 o'clock, 3 o'clock or 6 o'clock direction. The results showed that pipes failed more easily on the compression side due to stress or local buckling. The air defect was more dangerous than the steel defect if the defect was located in the compression side; otherwise, the defect material effect on the integrity of pipes was ignorable. It is argued that the integrity of pipes with defects in the compression side is weaker than that in other regions, and the defect should be located in the compression side or the 12 o'clock position in the three point bend test to maximize the effect of defect existence on the pipe structural integrity.

순간 수격파의 관 만곡부내 전파에 따른 과도력 (Transient Forces on Pipe Bends by the Propagation of Pressure Wave)

  • 우효섭;;김원
    • 물과 미래
    • /
    • 제27권4호
    • /
    • pp.155-160
    • /
    • 1994
  • 순간적인 밸브의 개폐 등에 의해 생성된 압력파가 관의 만곡부를 지날 때 만곡부에 미치는 힘은 변화한다. 본 연구에서는 이러한 힘의 변화량을 해석적으로 유도하였다. 본 해석에 의하면 힘의 변화량은 유체의 운동량 변화보다는 주로 정수압에 의해 결정되며, 압력파가 만곡각의 90$^{\circ}$ 이상인 만곡부를 지날 때에는 여기에 미치는 연직성분 힘의 방향이 바뀌는 것으로 나타났다.

  • PDF

배기계 진동해석에서의 굴곡부 모델링기법 (The Bend Modelling Technique in the Vibration Analysis of the Exhaust System)

  • 김윤영;이장명;김진홍
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.597-604
    • /
    • 1995
  • When a pipe bend is modelled with straight beam elements, its stiffness, particularly in bending behavior, is overestimated than its true value. In this paper, we propose a simple and practical beam-modelling technique to estimate its stiffness properly. When this technique, based on the strain energy concept, is employed to modify the beam sectional properties of the bend, quite satisfactory results can be obtained. To verify the validity of this method, we apply the present technique to the free vibration analysis of a center pipe with 2 bends, one of the three components of the automobile exhaust system.