• Title/Summary/Keyword: Pink mold rot. Trichothecium roseum

Search Result 6, Processing Time 0.018 seconds

First Report f Pink Mold Rot on Matured Fruit of Cucumis melo Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 시설재배 멜론성과의 분홍빛열매썩음병(신칭) 발생)

  • 권진혁;강수웅;이준택;김희규;박창석
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.642-645
    • /
    • 1998
  • A severe pink mold rot on matured melon fruits occurred under a glass tunnel cultivation in Chinju at Kyeongasngnam-do Agricultural Research and Extention Services on May of 1998. Basal portion of the fruits toward blossom end was preferably infected and colonized by the fungus. The causal fungus consistently isolated from the lesions was identified as Trichothecium roseum based on following mycological characteristics. Conidia were hyaline or brightly colored, 2-celled, ovoid or elipsoid, characteristically held together zi-zag chains. Conidiophore was long, slender, simple, septate, bearing conidia-meristem arthrospores-apically, singly when young and successively by slight growth of conidiphore apex. Optimum temperature for mycelial growth and conidial germination was recorded at 20~$25^{\circ}C$. However, over 48% of the fungal conidia were germinated at 15$^{\circ}C$ and mycelial growth was only slightly slower than $25^{\circ}C$. The temperature profiles and high humidity available during the cultivation were considered favorable for the pathogen as showing 22% infection rate on matured melon fruits cv. Saros. This is the first report of pink mold rot of melon caused by T. roseum in Korea.

  • PDF

First Report of Pink Mold Rot on Tomato Fruit Caused by Trichothecium roseum in Korea (Trichothecium roseum에 의한 토마토 분홍빛열매썩음병 발생)

  • Han, Kyung-Sook;Lee, Seong-Chan;Lee, Jung-Sup;Soh, Jae-Woo
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.396-398
    • /
    • 2012
  • Pink mold rot of tomato occurred very severly on tomato farm in Paju, Gyounggi Province, Korea, in July 2005. The infected fruits were dropped and abandoned and the symptoms were similar to calcium deficient tomatoes. But symptom was a slight water-soaked area on or near the blossom end of the fruit and firm greyish-brown lesions were most found at the blossom-end of affected fruits. lesions caused by the pink mold fungus possess a water soaked margin and rise to characteristic orange-pink spores. Also when the diseased tomato was cut, the inside of tomatoes showed completely rotted with pink mold. The causal fungus was identified as Trichothecium roseum based on mycological characteristics. This is the first report of T. roseum infecting greenhouse tomatoes in Korea.

Pink Mold Rot on Asian Pear (Pyrus serotina Rehder) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 배 분홍빛썩음병 발생)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Choi, Si-Lim;Cho, Cho-Yong;Choi, Ok-Hee;Cho, Hyeoun-Suk;Shim, Chang-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.373-380
    • /
    • 2013
  • A severe pink mold rot on matured asian pear (Pyrus serotina Rehder) fruit occurred in the organic farmers' orchard in Jinju, Korea in October, 2012. Decay of pear fruit appeared as a softened water-soaked symptom that was easily punctured by pressure. Later pink mycelium appeared on the surface of pear fruit and produced a mass of powdery pink conidia spores. Optimum temperature for mycelial growth of T. roseum was $25^{\circ}C$. Conidia showed hyaline, smooth, 2-celled, thick-walled with truncate bases, ellipsoidal to pyriform, and characteristically held together zig-zag chains and $10{\sim}22(34){\times}6{\sim}10(12){\mu}m$ in size. Conidiophore was erect, colorless, unbranched type, and 4-5 ${\mu}m$ width. On the basis of mycological characteristics, pathogenicity test, and molecular identification with the ITS region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray.

Pink Mold Rot on Unishiu Orange (Citrus unshiu Mac.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 감귤 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Choi, Okhee;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.226-228
    • /
    • 2013
  • In 2012, a pink mold rot was observed on unishiu orange (Citrus unshiu Mac.) fruits at the Wholesale Market for Agricultural Products, Jinju, Korea. The symptom on unishiu orange was a water-soaked lesion on the surface of fruit, which later on enlarged to form softened brown rot lesions. The diseased fruits were covered with pink-colored mold, consisting of conidia and conidiophores of the pathogen. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, 2-celled, and thick-walled conidia with truncate bases, ellipsoidal to pyriform, characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and 4-5 ${\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete ITS rDNA region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray. This is the first report of pink mold rot caused by T. roseum on unishiu orange in Korea.

Pink Mold Rot on Apple (Malus pumila var. dulcissima Koidz.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 사과 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kim, Min-Jeong;Shim, Chang-Ki;Jee, Hyeong-Jin;Lee, Sang-Dae
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.429-433
    • /
    • 2014
  • In 2012, a pink mold rot was observed on apple (Malus pumila var. dulcissima Koidz.) at the Wholesale Market for Agricultural Products, Jinju, Korea. The first symptom of pink mold rot on apple fruit is a water-soaked appearance of the affected tissue and surface fruit formed pink mold rot, then became brown and produced a mass of powdery pink conidia spores. Colony was fast growing colonies, pinksh, zonate in diurnal rhythm, powdery from conidia. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, two-celled, thick-walled conidia with truncate bases, ellipsoidal to pyriform, and characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and $4-5{\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular identification with the ITS region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray.