• 제목/요약/키워드: Pinion Gear

검색결과 120건 처리시간 0.037초

CRP 시스템의 피팅수명 (Pitting Life of CRP System)

  • 김창현;남형철;권순만
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.283-289
    • /
    • 2012
  • Cam rack pinion (CRP) system which consists of cam rack and roller pinion transforms the rotation motion into linear one. The roller pinion has the plurality of rollers and meshes with its conjugated cam rack. The exact tooth profile of the cam rack and the non-undercut condition to satisfy the required performance have been proposed by introducing the profile shift coefficient. The load stress factors are investigated by varying the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor)

  • 최상규;김영철;권병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

RGM 기반 롤러 트랙 기어 시스템 설계 (Roller Track Gear System Design based on Roller Gear Mechanism)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.194-198
    • /
    • 2014
  • In recent years, RGM(roller gear mechanism) systems, wherein one of the gears of a meshing gear pair is replaced with pins or rollers, have been reintroduced, which is a consequence of, and therefore a reflection of, the rapid advances made in manufacturing technology. Three RTG(roller track gear) systems for arbitrary path transportation (e.g., L-, O-, U-, and S-shaped tracks) were constructed using two out of three RGM systems, namely, the CRP(cam rack pinion), CRG(cam ring gear), and RPG(roller pinion gear) systems, and are introduced in this paper. We also present three ways to prevent the intersection and non-contact phenomena at the teeth in the vicinity of the conversion point between two joined RGM systems.

이동식발전설비의 기동전동기용 전자식 시동 제어장치 개발 (Development of an Electronic Starting Controller for Starting Motor of Packaged Power Systems)

  • 김종수;윤경국;서동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.700-706
    • /
    • 2012
  • 이동식발전설비에서 시동장치의 핵심기술은 피니언기어 쉬프팅 장치와 초기 기동전압을 제한하는 것이며 기존의 제품에서는 기계적 주접점을 이용한 시동 제어장치를 사용하고 있다. 하지만 완전한 피니언기어 쉬프팅 후 시동전동기의 기동의 불확실성이나 대전류에 의한 주접점의 아크손상 등의 큰 문제점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 기동의 불확실성 제거를 위한 피니언기어 쉬프팅 제어회로, 대전류에 의한 접점의 아크손상 방지를 위해 반도체 소자를 이용한 시동 제어시스템, 직권전동기의 소프트 스타팅을 위한 기동 안전장치 등을 새롭게 설계, 제작하여 안전성과 신뢰성을 얻고자 하였다. 또한, 피니언기어 제어회로와 전동기 전원회로를 분리하여 전기적 안전성을 확보하였다.

자동차용 피니온 기어재의 이종재 마찰용접과 실시간 AE평가 (Dissimilar Friction Welding for Pinion Gear and Its Real Time AE Evaluation)

  • 오세규;손덕수;양형태
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.105-111
    • /
    • 1999
  • This study aimed not only to develop the optimization of dissimilar friction welding of pinion gear of a motor vehicle steels of SCM415 and SMn443, but also to develop the application technique of the acoustic emission to accomplish an in-process real-time quality(such as strength and toughness) evaluation during friction welding of the pinion gear by the AE technique.

  • PDF

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

BRG 시스템의 접촉 피로수명 (Contact Fatigue Life for RRG System)

  • 남형철;김창현;권순만
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

자동차 Differential gear case 불평형 교정을 위한 balancing 장치설계 및 측정에 관한 연구 (A Study on the Design and Measurement of a Balancing Device for Unbalance Correction of Differential Gear Case in Automobile)

  • 장태환;권진욱;엄지현;김정아;김태규
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.303-309
    • /
    • 2020
  • A vehicle's differential gear is a device designed to allow the vehicle's outer wheels to turn faster than the inner wheels when turning on a curve. The differential gear case is the main component of the differential gear system, which is composed of ring gear, pinion gear and side gear, and is fastened by pinion shaft pins. The differential gear case rotates when the vehicle is running, so balancing calibration is very important. In this study, a balancing machine that can diagnose and correct the differential gear case and mass imbalance of various rotating bodies was designed. The differential gear case was rotated at high speed to accurately diagnose the location and value of the unbalanced mass, and it was designed to be balanced and corrected by removing the unbalanced mass by drilling. After calibration, it was confirmed that the unbalanced value of all the measured samples was reduced to less than 180g.mm, and the unbalance reduction ratio was improved to 60~70%.