• Title/Summary/Keyword: Pine bark

Search Result 175, Processing Time 0.029 seconds

Adsorption of Lead Ions from Aqueous Solutions Using Milled Pine Bark (분말 소나무 수피를 이용한 수용액 중의 납 이온 흡착)

  • Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2006
  • The use of pine bark, a natural adsorbent prepared from Korean Red Pine (Pinus densifloral), was studied for its adsorption behavior of lead ion from aqueous solution. Adsorption experiments were carried out on lead ion concentrations of 10mg/L. Adsorption of lead ion could be described by both Langmuir and Freundlich adsorption isotherms. Treatment of the bark with nitric acid greatly increased initial adsorption rate, and equilibrium sorption capacity increased by approximately 48%. A pseudo second-order kinetic model fitted well for the kinetic behavior of lead ion adsorption onto the bark. Acid-treated bark demonstrated its adsorption capacity quite close to that of granular activated carbon. Results of this study indicated that ion exchange and chelation were involved in the adsorption process.

Effect of Phenol in the Liquefaction of Pine Bark by Ethylene Carbonate-Methanesulfonic Acid

  • Mun, Sung Phil;Hassan, El-Barbary M.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.66-74
    • /
    • 2002
  • The effects of phenol during ethylene carbonate (EC) liquefaction of pine bark in the presence of methanesulfonic acid (MSA) as a catalyst were investigated. Liquefaction of pine bark using EC in the presence of acid catalyst was very difficult in comparison to wood. Mixing ethylene glycol (EG) with EC improved the liquefaction process, but the maximum liquefaction yield did not exceed 78%. Mixing 20~30% phenol with EC was very effective for the liquefaction and the residue was remarkably decreased. More than 95% of liquefaction was achieved when about 30% phenol was mixed with EC. The reaction conditions, such as catalyst concentration, liquefaction temperature and time, type of catalyst and liquefying agent, had a great influence on the liquefaction process. The results of the average molecular weights and the amount of combined phenols for the liquefied products indicated that sulfuric acid (SA) causes high condensation reactions compared to MSA.

Effect of feeding Korean red pine bark extract on the levels of fatty acid and cholesterol in chicken meats (닭고기의 콜레스테롤과 지방산 함량에 관한 소나무 껍질추출물의 급여효과)

  • Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.76-86
    • /
    • 2010
  • This study was conducted to evaluate the effects of dietary Korean red pine bark extract as an antibiotic replacements on cholesterol, fatty acids and the shelf-life of chicken meat. To accomplish this, chickens were fed the optimal level of red pine bark extract that was found to replace antibiotics in the diet of broilers. A total of 180 male broilers(Ross strain 308) were divided into three treated groups, T1(control group), T2(8 ppm of avilamycin) and T3(65 ppm of red pine bark extract per kg diet). The lipid content was reduced by 24.67% and 20.49% in T3 group, while the cholesterol level also decreased significantly in the T3 group by 20.49% and 20.55% when compared to the T1 and T2 groups, respectively. In addition, the saturated fatty acid level was lower in the T3 group than in the T1 and T2 groups, while the unsaturated fatty acid level of the T3 group was significantly higher than those of the other groups. The TBARS value of chicken thigh muscle containing its skin on the 7th day of low temperature storage was significantly lower by 23.86% and 21.17% in the T3 group than in the T1 and T2 groups, respectively. Evaluation of the color of the meat revealed that the $L^*$value (lightness) and $b^*$value(yellowness) were higher in the T3 group than in the T1 and the T2 groups, but that the pH was significantly lower in the T3. Based on the results of this study, the addition of 65 ppm red pine bark extract to the diet of broilers should improve their meat quality with respect to the lipid contents and shelf-life when compared to the addition of antibiotics.

Preparation of Concrete Admixtures from Pine Bark Wasts(I) - Optimal Sulfonation of Bark Components - (폐 소나무 수피로부터 콘크리트 혼화제의 제조(I) - 수피성분의 최적 설폰화조건 -)

  • 문성필;박성천;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.743-746
    • /
    • 1998
  • Pine bark waste was delignified with various sulfite liquors in order to use its spent liquor as concrete additives. The bark was easily deliginfied in alkaline sulfite-anthraquinone(ASAQ) cooking, resulting in more than 90% delignification. The dispersing ability of the ASAQ spent liquor was almost equivalent to or better than that of the commercial wood lignosufonate(CSL), Sanflo R.

  • PDF

Invention of the Portable Bark Remover for Control of Pine Wilt Disease by Disruption of Oviposition of Insect Vector (Monochamus alternatus) (소나무재선충병 매개충 솔수염하늘소(Monochamus alternatus) 방제를 위한 휴대용 수피제거기 개발 및 산란 방지 효과)

  • Kim, Joon Bum;Park, Young Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.300-304
    • /
    • 2013
  • Pine wilt disease caused by pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has become the most serious threat to pine trees in Korea since 1988. Pine wood nematode is transferred to healthy trees by Monochamus alternatus (Coleoptera: Cerambycidae) during its maturation feeding and female oviposition. A typical control method against insect vectors in Korea is fumigation of the dead trees by using metam-sodium SL (25%). However, this method is not environment friendly because of the forest contamination by chemical application and destroying landscape by plastic cover. Portable Bark Remover (PBR) was invented to reduce these environmental problems. The vectors oviposit under the bark of the newly dead trees only. Debarking infested trees prevents the vectors from laying eggs and eventually, they can not complete their life cycle. The PBR is a modified debarking device that is attached on the top of the electrical chain saw, which allows ease and rapid debarking of the infested trees. The new method by PBR is expected to be more economic and effective than other conventional methods such as "crushing", "burning" and "fumigation".

Development of New Products and High Value Added Biopolymer from Softwoods by Chemical Modification - Quantitative Variation of Water-soluble Extracts from Coniferous Barks for Tannin-based Adhesives - (화학가공에 의한 침엽수재의 품질귀화 및 고부가 Biopolymer 개발 (I) - 타닌접착제를 위한 침엽수 수피의 수용성 추출물의 양적 변이 -)

  • Cho, Nam-Seok;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-6
    • /
    • 1996
  • Extracts from bark have been studied with a view to producing water-proof wood adhesives. Lately many softwoods, such as radiata pine from New Zealand and larch from Siberia, Russia, have been imported and utilized, and their residual barks would be expecting as potential raw materials for something useful chemicals. The great effort toward utilization of bark extractives as a chemical feedstock has been made on a worldwide level. However few report has been done for the utilization of tree bark extractives in Korea. Hot-water extracts were prepared from barks of Japanese larch(Larix leptolepis). Siberian larch(Larix gmelinii) and Radiata pine(Pinus radiata). The effect of various factors, such as particle size, liquor ratio, extraction temperature, and reaction time, on the extractive yields was discussed. Particle sizes affected the hot-water extractives: the finer the particle size, the higher extractives and extract efficiency. Higher temperature and higher liquor ratio were more effective. Extractives from Japanese larch were relatively less than those from Siberian larch and Radiata pine barks. Formaldehyde precipitates was the highest in extractives of Radiata pine barks. It could be concluded that Siberian larch bark was the best raw material for tannin adhesives, because its extractive yield was higher than those of the other barks.

  • PDF

Characterization of Pine Bark Charcoal Prepared from Small and Large-Scale Carbonization Kilns (소용량 및 대용량 탄화로에서 제조된 소나무 수피탄의 특성)

  • 문성필;황의도;박상범;권수덕
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • Pine bark was carbonized by using a small-scale experimental kiln and three different types of large-scale kilns (simple (400-$500^{\circ}C$), improved (600-$700^{\circ}C$) and special kiln (800-$1,000^{\circ}C$). The physical properties and pore structures of the bark charcoals prepared were analyzed. When the bark was carbonized at various temperatures ranging from 500 to $900^{\circ}C$in the presence of nitrogen, carbonization yield decreased rapidly with increasing carbonization temperature and it remained constant from 700 to $900^{\circ}C$. The carbonization yield of the bark was 16 - 18% higher than that of pine wood. The BET specific surface areas and iodine values increased with a decrease in carbonization yield. The BET specific surface areas of the bark charcoals reached about 400 -$500m^2/g$ for carbonization yield of 32-40%. The pine wood charcoal prepared at $600^{\circ}C$ for 30 min resulted in a more microporous structure, whereas the bark charcoal prepared at the same condition was more mesoporous. The carbonization yields and physical properties such as iodine values and BET specific surface areas of bark charcoals prepared by using the large-scale kilns were very similar to those of the small-scale kiln. The results indicated that the pine bark could be used as starting material to produce good quality charcoal having a large specific surface area and a high carbonization yield.

  • PDF

Characterization of Liquefied Pine Bark Prepared from Phenol-Organic Sulfonic Acids Liquefaction. (소나무 수피 페놀-유기설폰산 액화에 의하여 제조된 액화물의 특성)

  • 문성필;로경란;이종문
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.3
    • /
    • pp.18-27
    • /
    • 2002
  • Pine bark was liquefied in the presence of phenol using organic sulfonic acids as catalysts, and the liquefied barks were characterized. It was found that the organic sulfonic acids were more effective catalysts than hydrochloric acid for complete liquefaction of pine bark. The liquefied barks prepared from phenol-organic sulfonic acid liquefaction were highly phenolated, and the amounts of combined phenol were 2-3 times greater than that of the liquefied bark obtained from phenol-hydrochloric acid liquefaction. The glass transition points (Tg) were lower than that of the liquefied barks prepared from phenol-hydrochloric acid. It can be concluded that by using the organic sulfonic acids, the phenol used as a liquefying reagent is highly introduced into the bark, resulting in the phenolated bark preventing further condensation reactions, which may occur during the liquefaction. The carbohydrates such as cellulose and hemicellulose in the liquefied barks were almost decomposed during the liquefaction, from the results of IR spectra and neutral sugar analyses. Energy dispersive X-ray spectromery (EDS) results from the residues and the liquefied barks showed that the organic sulfonic acid catalysts did not lead to serious corrosion of the reactor compared with the hydrochloric acid catalyst.

  • PDF

Utilization of Pine Bark(II) -Characterization of Mg- and Na-base Acid Sulfite Cooking- (소나무 수피(樹皮)의 총합적(總合的) 이용(利用)(II) -Mg- 및 Na-base 산성(酸性) 아황산염(亞黃酸鹽) 증해(蒸解) 특성(特性)-)

  • Mun, Sung-Phil;Kim, Jae-Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 1994
  • Effects of Mg-base acid sulfite and Mg- or Na-base bisulfite on pine bark cooking were examined. In the presence of 75 % free acid at 145 $^{\circ}C$, the rate of cooking and delignification was improved with the increase of total acid. However, the delignification could not be achieved by 50 % or more under these cooking conditions. When cooked with 50~65 % free acid and at 155~165 $^{\circ}C$, the rate of cooking and delignification was remarkably improved. Thus, the bark was delignified up to 73 % when cooked for 2 hours in the presence of 50 % free acid and 24 % total acid. Na-base bisulfite was slightly more effective than Mg-base bisulfite for cooking, giving 76 % delignification of pine bark. However, there was no significant difference in selectivity of delignification between Na- and Mg-base bisulfite cooking.

  • PDF

Chemical Analyses of Coniferous Flavonoids in Korea - The Flavonoids of Red Pine Bark(Pinus densiflora) - (침엽수(針葉樹) 수피(樹皮)의 Flavonoid에 관한 성분분석(成分分析) (I) - 소나무 수피(樹皮)의 Flavonoids -)

  • Kim, Hoon;Song, Hong-Keun;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.73-79
    • /
    • 1991
  • The flavonoids from plants is very widly used as natural dye for food and medicine etc. In this study, red pine which is widespread in Korea was studied to find new chemicals which may use as raw material for the special purpose. The fIavonoids of red pine bark were separated with Sephadex LH-20 and Toyo pearl HW-40F as packed materials and the structure of separated f1avonoids was determined by $^1H$-and $^{13}C$-NMR spectroscopy. The (+) catechin which is widespread in nature and dihydroquercetin-3'-0-${\beta}$-galactoside were found in red pine bark. The dihydroquercetin-3'-0-${\beta}$-galactoside is newly found in this species.

  • PDF