• 제목/요약/키워드: Pilot symbol

검색결과 130건 처리시간 0.026초

Performance Analysis of Linearly Constrained, Modified MMSE Detection for DS-CDMA Systems in Fading Channels (페이딩 채널에서 DS-CDMA 시스템을 위한 선형제약 변형 MMSE 검출의 성능 해석)

  • Lee Seo young;Kim Seong Rag;Lim Jong Seul;Ann Seong Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권10A호
    • /
    • pp.1159-1166
    • /
    • 2004
  • This paper follows up the previous work on the linearly constrained, modified minimum mean-squared error(MMSE) detection for direct-sequence code-division multiple-access DS-CDMA) systems in fading channels. We find a condition to avoid the breakdown of joint modified MMSE detection and pilot symbol-aided channel estimation (PSACE). The linearly constrained, modified MMSE solution is theoretically shown to be robust against time variations in Rayleigh fading channels. This fact is consistent with the simulation results. We also show that under some conditions the linearly constrained, modified MMSE detection maximizes the output signal-to-interference-plus-noise ratio.(SINR)

A Detection Method for An OFDM Signal Distorted by I/Q Imbalance (I/Q 불균형에 의하여 왜곡된 OFDM 신호의 검출방식)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제30권1A호
    • /
    • pp.37-45
    • /
    • 2005
  • In this paper, after analyzing the effect of I/Q imbalance in an OFDM system, the detection method of an OFDM signal distorted by I/Q imbalance is proposed. Also, the channel estimation and the pilot symbol design scheme are proposed for using the proposed detection method. Since I/Q imbalance in an OFDM system degrades the SIR and the BER(Bit Error Ratio) performance, the robust detection method is required for an OFDM system. the proposed detection method can effectively suppress the interference caused by I/Q imbalance using characteristics of an OFDM signal differently from the conventional method, and results in improving the SIR of a desired OFDM signal.

Performance of SFBC OFDM Transmission Systems Using PSAM Technique (PSAM 방식의 SFBC OFDM 전송 시스템의 성능)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제15권5호
    • /
    • pp.1031-1037
    • /
    • 2011
  • Pilot symbol assisted modulation (PSAM) can be used for the channel estimation in orthogonal frequency division multiplexing (OFDM) transmission systems. However, imperfect channel estimates in PSAM systems degrade the bit error rate (BER) performance. I derive the BER of PSAM OFDM systems over time dispersive fading channels. The BER performance of OFDM systems with SFBC antenna diversity are analyzed, where data is transmitted over time and frequency selective Rayleigh fading channel. The performance of this PSAM SFBC OFDM systems, gauged by the average bit error rate, is analyzed considering the channel estimation error.

Multi-Access Points Transmit Power Control Algorithm in Consideration of the Channel Estimation Error and the Multi Rate Service (채널추정 에러와 다중 전송률 서비스를 고려한 다수 개의 엑세스포인트 전송전력제어 알고리즘)

  • Oh, Changyoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제25권4호
    • /
    • pp.39-47
    • /
    • 2020
  • We propose a multi-access points transmit power control algorithm in consideration of the channel estimation error and the multi-rate service. In the real communication systems, the channel estimation at the receiver side is imperfect due to limited number of pilot symbol usage. Furthermore, the multi-rate service is supported. We theoretically prove the uniqueness and the convergence of the proposed algorithm in multi-rate service environment. The proposed algorithm composes of one inner loop part and one outer loop part. Simulation results show that 1) the inner loop algorithm guarantees convergence of the transmit power level and the multi-rate service, 2) the outer loop algorithm compensates for the channel estimation error.

Implementation of Location Based Services Using Satellite DMB System (위성 DMB 시스템을 이용한 위치 기반 서비스 구현)

  • Kwon, Seong-Geun;Lee, Suk-Hwan;Kim, Kang-Wook;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • 제15권1호
    • /
    • pp.32-39
    • /
    • 2012
  • In this paper, the implementation of location based services (LBS) using S-DMB (satellite-digital multimedia broadcasting) system was proposed. In S-DMB System, the frequency of transmitted signal is about 2 GHz which has a characteristics of strong straightness but weak diffraction so that there are many shade areas such as indoors and underground spaces. Therefore the signal transmitted from the satellite should be retransmitted by the earth repeaters called as gap filler. Because each gap filler has its own identification value, the gap filler ID introduces the area in which the gap filler was installed. Generally, the 51st data symbols of S-DMB pilot signal transmitted from the satellite are padded by dummy value and gap filler ID is embedded in this pilot symbol by the gap filler when S-DMB signals are retransmitted by gap fillers. So using gap filler ID of S-DMB system, LBS such as region registration, distance and time to destination, alarm of local area information could be implemented. In the experiment to prove the performance of the proposed LBS system using the gap filler ID of the S-DMB system, the firmware of S-DMB chip composing of RF and baseband parts was lightly modified so that application processor was able to manipulate the gap filler ID and the its related regional information.

Estimation of Fractional Frequency Offset for the Next-Generation Digital Broadcasting System (차세대 디지털 방송시스템을 위한 소수배 주파수 오프셋 추정)

  • Kim, Ho Jae;Kang, In-Woong;Seo, Jae Hyun;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제41권11호
    • /
    • pp.1364-1373
    • /
    • 2016
  • Ultra High Definition Television (UHDTV) has attracted much attention as one of next generation broadcasting services. For the commercialization of UHD broadcasting service, standardization groups including the DVB (Digital Video Broadcasting) and the ATSC (Advanced Television Systems Committee) have decided to adopt the Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission. However, when the carrier frequency is not properly synchronized at the receiver, inter-symbol interference (ISI) and inter-carrier interference (ICI) may occur. In order to avoid performance degradation resulting from ISI or ICI, receivers should synchronize the carrier frequency by using preambles and pilot symbols. However, there only few published literature dealing with the frequency offset estimation methods regarding the next generation terrestrial broadcasting. In this respect, this paper proposes a method to estimate timing and fractional frequency offset for the ATSC 3.0 system by using a preamble bootstrap symbol. The proposed detector can detect the fractional frequency offset by adding a complex conjugate product on the conventional estimator where only timing offset can be estimated.

Performance Analysis of New LMMSE Channel Interpolation Scheme Based on the LTE Sidelink System in V2V Environments (V2V 환경에서 LTE 기반 사이드링크 시스템의 새로운 LMMSE 채널 보간 기법에 대한 성능 분석)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권10호
    • /
    • pp.15-23
    • /
    • 2016
  • To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제30권10C호
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

Performance Analysis of Adaptive Channel Estimation Scheme in V2V Environments (V2V 환경에서 적응적 채널 추정 기법에 대한 성능 분석)

  • Lee, Jihye;Moon, Sangmi;Kwon, Soonho;Chu, Myeonghun;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제54권8호
    • /
    • pp.26-33
    • /
    • 2017
  • Vehicle communication can facilitate efficient coordination among vehicles on the road and enable future vehicular applications such as vehicle safety enhancement, infotainment, or even autonomous driving. In the $3^{rd}$ Generation Partnership Project (3GPP), many studies focus on long term evolution (LTE)-based vehicle communication. Because vehicle speed is high enough to cause severe channel distortion in vehicle-to-vehicle (V2V) environments. We can utilize channel estimation methods to approach a reliable vehicle communication systems. Conventional channel estimation schemes can be categorized as least-squares (LS), decision-directed channel estimation (DDCE), spectral temporal averaging (STA), and smoothing methods. In this study, we propose a smart channel estimation scheme in LTE-based V2V environments. The channel estimation scheme, based on an LTE uplink system, uses a demodulation reference signal (DMRS) as the pilot symbol. Unlike conventional channel estimation schemes, we propose an adaptive smoothing channel estimation scheme (ASCE) using quadratic smoothing (QS) of the pilot symbols, which estimates a channel with greater accuracy and adaptively estimates channels in data symbols. In simulation results, the proposed ASCE scheme shows improved overall performance in terms of the normalized mean square error (NMSE) and bit error rate (BER) relative to conventional schemes.

Normalized CP-AFC with multistage tracking mode for WCDMA reverse link receiver (다단 추적 모드를 적용한 WCDMA 역방향 링크 수신기용 Normalized CP-AFC)

  • Do, Ju-Hyeon;Lee, Yeong-Yong;Kim, Yong-Seok;Choe, Hyeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제39권8호
    • /
    • pp.14-25
    • /
    • 2002
  • In this paper, we propose a modified AFC algorithm which is suitable for the implementation of WCDMA reverse link receiver modem. To reduce the complexity, the modified CP-FDD algorithm named 'Normalized CP-FDD' is applied to the AFC loop. The proposed FDD algorithm overcomes the conventional CP-FDD's sensitivity to the variance of input signal amplitude and increases the linear range of S -curve. Therefore, offset frequency estimation using the proposed scheme can be more stable than the conventional method. Unlike IS-95, since pilot symbol in WCDMA is not transmitted continuously, we introduce a moving average filter at the FDD input to increase the number of cross-product. So, tracking speed and stability are improved. For more rapid frequency acquisition and tracking, we adopt a multi-stage tracking mode. Using NCO having ROM table structure, the frequency offset is compensated. We applied the proposed algorithm in the implementation of WCDMA base station modem successfully.