• Title/Summary/Keyword: Pilot signal

Search Result 263, Processing Time 0.03 seconds

Binary Black Hole Inspirals and GW detection in 0.1-10 Hz

  • Bae, Yeong-Bok;Ahn, Sang-Hyeon;Kang, Gungwon;Kim, Chunglee;Kim, Whansun;Oh, John J.;Oh, Sang Hoon;Park, Chan;Son, Edwin J.;Lee, Yong Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.53.3-53.3
    • /
    • 2017
  • The pilot study of SLGT (Superconducting Low-frequency Gravitational-wave Telescope) is being performed by KKN (KASI-KISTI-NIMS) collaboration. In this presentation, we discuss prospectives of detecting GWs in the low-frequency band (0.1-10 Hz), which is a target frequency band of SLGT, but can be hardly observed by advanced LIGO. IMBHBs (Intermediate Mass Black Hole Binaries) and IMRIs (Intermediate Mass Ratio Inspirals) with total masses of O(1000) up to O(10,000) solar masses are most probable sources between 0.1-10 Hz. We estimate horizon distances and signal to noise ratios of IMBHBs and IMRIs for different SLGT design sensitivities. Based on our calculations, detection rates for IMBHBs and IMRIs with SLGT will be discussed.

  • PDF

Electrode Characteristics of Non-contact Electrocardiographic Measurement

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho;Choi, Won Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.42-45
    • /
    • 2015
  • The ability to take electrocardiographic measurements while performing our daily activities has become the people-choice for modern age vital sign sensing. Currently, wet and dry ECG electrodes are known to pose threats like inflammations, allergic reactions, and metal poisoning due to their direct skin interaction. Therefore, the main goal in this work is to implement a very small ECG sensor system with a capacitive coupling, which is able to detect electrical signals of heart at a distance without the conductive gel. The aim of this paper is to design, implement, and characterize the contactless ECG electrodes. Under a careful consideration of factors that affect a capacitive electrode functional integrity, several different sizes of ECG electrodes were designed and tested with a pilot ECG device. A very small cotton-insulated copper tape electrode ($2.324cm^2$) was finally attained that could detect and measure bioelectric signal at about 500 um of distance from the subject's chest.

Learning a Single Joint Perception-Action Coupling: A Pilot Study

  • Ryu, Young-Uk
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • Purpose: This study examined the influence of visuomotor congruency on learning a relative phase relationship between a single joint movement and an external signal. Methods: Participants (N=5) were required to rhythmically coordinate elbow flexion-extension movements with a continuous sinusoidal wave (0.375 Hz) at a $90^{\circ}$ relative phase relationship. The congruent group was provided online feedback in which the elbow angle decreased (corresponding to elbow flexion) as the angle trajectory was movingup, and vice versa. The incongruent group was provided online feedback in which the elbow angle decreased as the angle trajectory was moving down, and vice versa. There were two practice sessions (day 1 and 2) and each session consisted of 6 trials per block (5 blocks per session). Retention tests were performed 24 hours after session 2, and only the external sinusoidal wave was provided. Repeated ANOVAs were used for statistical analysis. Results: During practice, the congruent group was significantly less variable than the incongruent group. Phase variability in the incongruent group did not significantly change across blocks, while variability decreased significantly in the congruent group. In retention, the congruent group produced the required $90^{\circ}$ relative phase pattern with significantly less phase variability than the incongruent group. Conclusions: Congruent visual feedback facilitates learning. Moreover, the deprivation of online feedback does not affect the congruent group but does affect the incongruent group in retention.

An algorithm for pahse detection using weighting function and the design of a phase tracking loop (가중치 함수를 이용한 위상 검출 알고리즘과 위상 추적 루프의 설계)

  • 이명환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2197-2210
    • /
    • 1998
  • In the grand alliance (GA) HDTV receiver, a coherent detection is empolyed for coherent demodulation of vestigial side-band (VSB) signal by using frequency and phaselocked loop(FPLL) operating on the pilot carrier. Additional phase tracking loop (PTL) employed to track out phase noise that has not been removed by the FPLL in theGA system. In this paper, we propose an algorithm for phase detection which utilizes a weighting function. The simplest implementation of the proposed algorithm using te sign of the Q channel component can be tractable by imposing a phase detection gain to the loop gain. It is obserbed that the propsoed algorithm has a robust characteristic against the performance of the digital filters used for Q channel estimation. A second goal of this paper is to introduce a gain control algorithm for the PTL in order to provide an effective implementation of the proposed phase detection algorithm. And we design the PTL through the realization of the simplified digital filter for H/W reduction. The proposed algorithms and the designed PTL are evaluated by computer simulation. In spite of using the simplified H/W structure, simulation results show that the proposed algorithms outperform the coventional PTL algorithms in the phase detection and tracking performance.

  • PDF

Performance Analysis of Linearly Constrained, Modified MMSE Detection for DS-CDMA Systems in Fading Channels (페이딩 채널에서 DS-CDMA 시스템을 위한 선형제약 변형 MMSE 검출의 성능 해석)

  • Lee Seo young;Kim Seong Rag;Lim Jong Seul;Ann Seong Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1159-1166
    • /
    • 2004
  • This paper follows up the previous work on the linearly constrained, modified minimum mean-squared error(MMSE) detection for direct-sequence code-division multiple-access DS-CDMA) systems in fading channels. We find a condition to avoid the breakdown of joint modified MMSE detection and pilot symbol-aided channel estimation (PSACE). The linearly constrained, modified MMSE solution is theoretically shown to be robust against time variations in Rayleigh fading channels. This fact is consistent with the simulation results. We also show that under some conditions the linearly constrained, modified MMSE detection maximizes the output signal-to-interference-plus-noise ratio.(SINR)

VSB-Based Digital On-Channel Repeater with Interference Cancellation System

  • Lee, Jae-Kwon;Suh, Young-Woo;Choi, Jin-Yong;Seo, Jong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.670-678
    • /
    • 2011
  • This paper investigates the design and performance of a digital on-channel repeater (DOCR) for use in Advanced Television Systems Committee (ATSC) digital television (DTV) broadcasting. The main drawback of a DOCR is the echo interference caused by coupling between transmitter and receiver antennas, which induces system instability and performance degradation. In order to overcome this problem, an echo canceller based on the adaptive echo channel estimation (ECE) technique has been researched and applied for a DOCR. However, in the case of ATSC, the pilot signal, which is used for carrier synchronization, may cause a DC offset error and reduce the isolation performance of the echo canceller for a DOCR in an ATSC network. Moreover, since the multipath fading effect of a radio channel usually occurs in a real environment, it should be minimized to improve the overall performance of a DOCR. Therefore, due to the limited isolation performance of echo canceller and the multipath fading effect, an interference cancellation system (ICS) is proposed for a DOCR in an ATSC network. The performance of the proposed DOCR with an ICS is evaluated by software simulation and hardware test results.

Baseband Signal Compensation Scheme for Frequency Selective Fading Channel and RF Impairments in OFDM System (OFDM 시스템에서 주파수 선택적 페이딩 채널과 RF 불완전 변환 극복을 위한 기저대역 신호보상 기법)

  • Kim, Jae-Kil;Kim, Jeong-Been;Hwang, Jin-Yong;Shin, Dong-Chul;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.55-64
    • /
    • 2010
  • In this paper, we propose a new compensation scheme for combined channel distortions and RF impairments based on the analysis of the impacts of IQ(In-phase/Quadrature) imbalance and phase noise on the OFDM(Orthogonal Frequency Division Multiplexing) system in the direct conversion transceiver and frequency selective fading channel distortion. The proposed scheme estimates the combined distortion by the use of training symbols and the residual distortion by pilot symbols and compensates the combined distortion, including IQ imbalance, phase noise and multipath fading at the same time. The simulation results show that the proposed scheme compensates the combined distortion of IQ imbalance, phase noise and multipath fading simultaneously.

LOS Analysis Frame for COSMOS at Isolated Intersections (실시간신호제어 독립교차로 서비스수준 분석 방법론)

  • Kim, Jin-Tae;Kim, Kang-Huy;Lee, Don-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2008
  • The level of service (LOS) evaluation method of the Highway Capacity Manual (HCM) is limited to intersections with pre-timed signal operation, while advanced real-time traffic control systems have been expending in the field. This paper proposes a preliminary framework for LOS analysis at isolated intersections controlled by COSMOS, the real-time traffic control systems robustly utilizing the degree of saturation as basic inputs. The proposed LOS evaluation framework was devised with a pilot model developed to estimate the average cycle length and green times of COSMOS. The validation test showed that the proposed framework was able to accurately project the LOS, which was separately evaluated based upon field data.

Spectral Deconvolution Analysis of Mafic Mineral in Irregular Mare Patches on the Moon

  • Hong, Ik-Seon;Yi, Yu;Park, Nuri
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.127-139
    • /
    • 2022
  • Irregular mare patches (IMPs), recently discovered on the Moon, are eruptions of magma on the lunar surface, and their origins are still in question. While prior studies on IMPs have mainly focused on optical image analysis, in this study, an analysis of the characteristics of minerals is performed exemplary for the first time. Modified Gaussian model (MGM) deconvolution was applied to the infrared spectrum to confirm the properties of the mafic mineral. Mafic minerals were analyzed for 6 olivine-rich (Ol-rich) IMPs out of 91 currently reported, and only 4 of them yielded results of significance. All four sites showed more abundance of Fe than Mg, and manifested a weak relationship with Mg-suite rock. However, a problem was discovered during the MGM application process due to pilot implementation. In order to solve this problem, it is required to adjust the MGM initial condition settings more precisely and to increase the signal to noise ratio of the observation data. Moreover, it is necessary to analyze the mineral properties for all IMPs considering minerals other than Ol and utilize them to deduce the origin of the IMPs.

State of the Art on Terrestrial Radionavigation System and Its Applications for Maritime PNT Service

  • Seo, Kiyeol;Fang, Tae Hyun;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • This paper addresses on the International technical trends, standards, and development status of terrestrial radionavigation system to provide more accurate and fail-safe Positioning, Navigation, and Timing (PNT) Information available in maritime navigation environment. We analyze the performance result of pilot service in enhanced Long range navigation (eLoran) testbed environment using Low Frequency (LF) signal, and describe the development status of Ranging-Mode (R-Mode) system using Medium Frequency (MF) and Very High Frequency (VHF) to meet the Harbor Entrances and Approaches (HEA) requirement of International Maritime Organization (IMO) within 10m position accuracy. Furthermore, we present an architecture for integrated service of satellite-terrestrial navigation system and future maritime applicable fields. As the core information infrastructure of future navigation for 4th industrial revolution, this paper will be contributed to determining the direction of present and future to provide fail-safe PNT service with Global Navigation Satellite System (GNSS) based on the technical enhancement of terrestrial integrated navigation system.