• Title/Summary/Keyword: Pilot plant test

Search Result 157, Processing Time 0.026 seconds

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho, Nam-Sun;Shin, Dae-Hyun;Park, Sou-Won;Lee, Kyong-Hwan;Kim, Kwang-Ho;Jeon, Sang-Goo;Cho, Bong-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.523-526
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quailty alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70t/y and the pi lot plant of 360 t/v had been developed. Main research contents in this step were the process performance test of pilot plant ot 360ton/year and the development of demonstration plant of 3 000 t/y which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/v showed components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal (탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구)

  • Park, Hanbai;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2321-2327
    • /
    • 2015
  • Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

Influences of Detention Time, Particle Size Distribution, and Filter Medium on Waterworks Sludges Dewatering (체류시간, 입도분포 및 여재가 정수 슬러지의 탈수에 미치는 영향)

  • Kim, Kwang-Soo;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.121-128
    • /
    • 2009
  • Objectives of this study were to investigate influencing factors of detention time, particle size distribution, and filter medium characteristics for waterworks sludge dewatering. The stepped pressure filtration was carried out with lab scale apparatus and the filter press pilot test for dewatering was conducted at the water treatment plant. Effects of filter medium and polymer dose were examined through observing water content and dewatering velocity and cyclic dewatering rate with filter press pilot test. Relationships among detention time, particle size distribution and filtration resistance were analyzed. Prolongation of sludge detention time was found to cause blinding phenomenon in cake and filter medium and to decrease dewatering process efficiency. The average specific resistance increased according to detention time. In pilot test of dewatering for thickened sludge with Nylon Multi-NY840D and Nylon Mono-100% filter media, dewatering velocities were 0.92 and $0.93kg\;DS/m^2{\cdot}hr$ according to 0.1% polymer dose of dried solids weight base. And cyclic dewatering rates were 2.45 and $2.50kg\;DS/m^2{\cdot}cycle$ cycle for the Nylon Multi-NY840D and Nylon Mono-100% media. Dewatering velocity of polymer dosed sludge was observed to be higher than that of non-polymer sludge.

Odor Removal by Using Compost and Granular Scrap Tires (퇴비 및 폐타이어 Granule을 이용한 악취 제거)

  • Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • In spite of low energy requirement, and operation and construction cost, biofilters with soil beds have not been operated efficiently. Because of excess moisture in winter and rainy periods, saturated pores in the bed prevent passage and sorption of odorous compounds. Sometimes this results in septic conditions that release previously sorbed and oxidized sulfur. Therefore, an economical and effective alternative needs to be developed. The objectives of this study were to confirm applicability of the granular scrap tires with compost for treating odorous gas as well as to obtain optimum design parameters for proposed system. In lab-scaled test, multiple stage reactors had lower headloss than a single stage reactor and less headloss was occurred for the gas with higher moisture content. For practical purpose, pilot-scaled reactor was operated to remove odor from septic tank, manure and animal wastewater treatment plant and composting machine. According to the results of pilot scaled test, $H_2S$ can be always removed completely and ammonia/amine can be removed excellently when proper moisture content is provided. The results from lab and pilot test showed that granular scrap tire could be replaced with soil as supporting material for biofilter showed excellent drainage because of its ability to reject moisture.

  • PDF

Reusing of dye wastewater by reverse osmosis (역삼투를 이용한 염료폐수 재활용 적용사례)

  • 최광호;김건태
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.04b
    • /
    • pp.69-90
    • /
    • 1999
  • 역삼투공정을 이용하여 염료폐수를 공업용수로 재활용하기 위해 설비의 구성, 운전조건 및 경제성에 대한 검토를 실시하였다. 이를 위해 먼저 원수의 성상 및 처리수 수질기준에 대한 검토를 통해 단위공정으로 물리적여과, 역삼투 및 증발농축으로 선정하고 2차에 걸친 Pilot Test를 실시하여 실 Plant 설치를 위한 설계인자를 확보하였다. 이를 바탕으로 750m$^{3}$/일의 염료폐수재활용 Plant를 설치하고 시운전과정을 통하여 성능 확인 및 운전조건을 확보하고 이에 따른 설비투자비 및 운전비 등의 경제성 검토를 실시하였다.

  • PDF

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Recovery of Iron-Nickel Alloy Etching Waste Solution in Pilot Scale (파일럿 규모에서 철-니켈 합금 에칭폐액 재생)

  • Chae, Byungman;Kim, Dae-Weon;Hwang, Sung-Ok;Kim, Deukhyeon;Lee, Sangwoo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.393-400
    • /
    • 2017
  • In this study, we have developed a process for separating and recovering Ni and Fe in solution through a new solvent instead of TBP and Alamine336, which are solvents used in the conventional solvent extraction method. Experimental conditions were optimized through lab test and a $10L\;h^{-1}$ pilot plant was constructed for commercialization. In addition, the process data for mass production were obtained through pilot experiment and it was confirmed that there is no problem in product quality that can be used through the corrosion test of ferric chloride.

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.