• Title/Summary/Keyword: Pilot frequency

Search Result 449, Processing Time 0.021 seconds

A Study on the Postprocessing of Channel Estimates in LTE System (LTE 시스템 채널 추정치의 후처리 기법 연구)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.205-213
    • /
    • 2011
  • The Long Term Evolution (LTE) system is designed to provide a high quality data service for fast moving mobile users. It is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the training samples which are systematically built within the transmitting data. Either a preamble or a lattice type is used for the distribution of training samples and the latter suits better for the multipath fading channel environment whose channel frequency response (CFR) fluctuates rapidly with time. In the lattice-type structure, the estimation of the CFR makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time-and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. All interpolation schemes should rely on the pilot estimates only, and thus, their performances are bounded by the quality of pilot estimates. However, the additive noise give rise to high fluctuation on the pilot estimates, especially in a communication environment with low signal-to-noise ratio. These high fluctuations could be monitored in the alternating high values of the first forward differences (FFD) between pilot estimates. In this paper, we analyzed statistically those FFD values and propose a postprocessing algorithm to suppress high fluctuations in the noisy pilot estimates. The proposed method is based on a localized adaptive moving-average filtering. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification. It is shown that the mean-squared error (MSE) between the actual CFR and pilot estimates could be reduced up to 68% from the noisy pilot estimates.

A Novel Channel Estimation Method Using Pilot Channels for Frequency-Interleaved MC-CDMA Systems (주파수 인터리빙된 MC-CDMA 시스템에서 파일럿 채널을 이용한 새로운 채널 추정 기법)

  • Cho Young-bo;Lee Jae-Gu;Oh seong-Mok;Kang Chang-eon;Hong Dae-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1186-1192
    • /
    • 2005
  • In this paper, we propose a novel channel estimation method based on pilot channel in a frequency interleaved multicarrier code division multiple access (MC-CDMA). Using the chip interleaving (CI) technique in the frequency domain make it possible to achieve higher frequency diversity gain than the system with conventional symbol interleaving. However, in CI-MC-CDMA systems, a pilot channel-based channel estimation (PCCE) cannot be applied because the orthogonality between pilot symbols and the data symbol is not maintained. The proposed method alters the system structure in order to maintain orthogonality between data and pilot channels over two consecutive subcarriers. Therefore, it can obtain accurate channel state information (CSI) in CI-MC-CDMA.

Integer Frequency Offset Estimation Scheme Robust to Timing Offset for OFDM-Based CR Systems (OFDM 기반 CR 시스템에서 시간 옵셋에 강인한 정수 주파수 옵셋 추정 기법)

  • Lee, Young-Yoon;Song, Chong-Han;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.554-561
    • /
    • 2010
  • This paper proposes an integer frequency offset estimation scheme robust to timing offset for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. The proposed scheme exploits a feature that a sample distance between a continual pilot and a scattered pilot nearest to it in an OFDM symbol belongs to one of predetermined distances. First after calculating a correlation value of every continual pilot and its nearest scattered pilot. Then, it is divided into several groups according to the sample distances. Since correlation values with the same sample distance undergo the same effect of the timing offset, the effect of the timing offset can be removed by re-correlating these correlation values. From the simulation results we can confirm that the proposed algorithm estimates the integer frequency offset with the robustness to the timing offset when compared to a conventional scheme.

Non-Pilot-Aided Timing Offset Estimation for OFDM Systems with Frequency Diversity

  • Yang, Hyun;You, Young-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-177
    • /
    • 2006
  • This letter deals with non-pilot-aided symbol timing estimation methods in an orthogonal frequency division multiplexing (OFDM) system. To do this, OFDM system uses a frequency diversity scheme over two consecutive data symbols. Our approach can be viewed as an expansion of Schmidl's and Minn's correlation methods. Using the OFDM signal equipped with frequency diversity, however, symbol timing is accurately estimated without additional training symbol and a second-order diversity gain is achieved.

  • PDF

A Research on Multiple PS QAM for Channel Compensation in Frequency-Selective Rayleigh Fading Channels (주파수 선택적 Rayleigh 페이딩 채널에서 고차 PS QAM 채널 보상에 대한 연구)

  • Kim, Jeong-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.79-84
    • /
    • 2013
  • In this paper, the method of multiple PS(pilot symbol) QAM channel compensation is suggested in order to analyze and improve occurring problems in case of delay waves in Frequency-Selective Rayleigh fading channels through Pilot Symbol Assisted Modulation(PSAM) which is a method predicting and compensating fading information, using Pilot Symbol in flat fading channels. This suggested method shows stable improvement in its performance even though it is effected by the level of delay on delay waves while the existing PSAM method has severe malfunction with a small amount of level of delay on delay waves regardless of signal-to-noise ratio(SNR).

Design of a Channel Estimator for the LTE System Based on the Multirate Signal Processing (다속신호처리 기법을 이용한 LTE 시스템 채널 추정기법 설계)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2108-2113
    • /
    • 2010
  • The Long Term Evolution (LTE) system is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the lattice-type pilot samples in the multipath fading channel environment. The estimation of the channel frequency response (CFR) makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time- and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. Any interpolation scheme could be adopted for this purpose. Depending on the requirements of the target system, we may choose a simple linear interpolation or a sophisticated one. For any choice of an interpolation scheme, these is a trade-off between estimation accuracy and numerical cost. For those wireless communication systems based on the OFDM and the preamble-type pilot structure, the DFT-based channel estimation and its variants have been successfully. Yet, it may not be suitable for the lattice-type pilot structure, since the pilot samples are not sufficient to provide an accurate estimate and it is known to be sensitive to the location as well as the length of the time-domain window. In this paper, we propose a simple interpolated based on the upsampling mechanism in the multirate signal processing. The proposed method provides an excellent alternative to the DFT-based methods in terms of numerical cost and accuracy. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification.

Optimal Pilot Sequence Design based on Chu sequences for Multi-cell Environments (다중 기지국 환경에서의 MIMO-OFDM 시스템을 위한 최적 파일럿 시퀀스 설계 방법)

  • Kang, Jae-Won;Rhee, Du-Ho;Byun, Il-Mu;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1113-1121
    • /
    • 2009
  • In this paper, the channel estimation and pilot sequence design technique of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in multi-cell environments are studied for situations in which the inter cell interference (ICI) is the dominant channel impairment. We design pilot sequence aiming at minimizing mean square error and propose the channel estimation technique correspond to the designed pilot sequences. The proposed pilot sequences employ the sequences with good correlation properties such as Chu sequence and through simulations, it is shown that channel estimation algorithm using designed pilot sequence is effective for mitigating the ICI.

Two-Dimensional Pilot Symbol Aided Channel Estimation for OFDM Systems over Frequency Selective Rayleigh Fading Channel (주파수 선택적 레일리 페이딩 채널에서 2-D PSA OFDM 시스템의 채널 추정)

  • 이병로
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1050-1055
    • /
    • 2001
  • In this paper we analyze the performance of 2-D PSAM for wireless OFDM systems. We apply the analysis of single-carrier PSAM to the 2-D time-frequency lattice of OFDM. To estimate channel fading, we use interpolation filter which minimizes the average power of error as compensation method and analyze the affects on the system performance of the pilot symbol pattern on the 2-D time-frequency lattice. Finally according to the CP and the Doppler frequency, we analyze the performance of 2-D PSA-16QAM for OFDM systems over frequency selective Rayleigh fading channel model.

  • PDF

Two-Dimensional Pilot Symbol Assisted Channel Estimation for OFDM Systems over Frequency Selective Rayleigh Fading Channel (주파수 선택적 레일리 페이딩 채널에서 OFDM 시스템을 위한 2-D PSA에 의한 채널 추정)

  • 이병로
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.336-340
    • /
    • 2001
  • In this paper we analyze the performance of 2-D PSAM for wireless OFDM systems. We apply the analysis of single-carrier PSAM to the 2-D time-frequency lattice of OFDM. To estimate channel fading, we use interpolation filter which minimizes the average power of error as compensation method and analyze the affects on the system performance of the pilot symbol pattern on the 2-D tine-frequency lattice. Finally according to the CP and the Doppler frequency, we analyze the performance of 2-D PSA-16QAM for OFDM systems over frequency selective Rayleigh fading channel model.

  • PDF

A Novel Pilot-Aided Integer Frequency Offset Estimation Scheme for OFDM-Based Systems (OFDM 기반 시스템에서 파일럿 심볼을 이용한 새로운 정수 주파수 옵셋 추정 기법)

  • Lee, Young-Yoon;Kim, Sang-Hun;Han, Tae-Hee;Yoo, Seung-Hwan;Kim, Sun-Yong;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.592-598
    • /
    • 2008
  • In this paper, a novel pilot-aided integer frequency offset estimation scheme is proposed for orthogonal Sequency division multiplexing (OFDM)-based digital video broadcasting (DVB) systems. The conventional pilot-aided integer frequency offset estimation scheme proposed for OFDM-based DVB systems exploits the partial information of combinations provided by pilots. Thus, in this paper, we propose a novel integer frequency offset estimation scheme exploiting all information of pilot combinations. To compare the performance of the proposed scheme with that of the conventional scheme, we conduct a simulation in additive white Gaussian noise (AWGN) and multipath Rayleigh channels, which shows that the proposed scheme outperforms the conventional scheme in terms of the probability of integer frequency offset estimation failure.